ﻻ يوجد ملخص باللغة العربية
In molecular outflows from forming low-mass protostars, most oxygen is expected to be locked up in water. However, Herschel observations have shown that typically an order of magnitude or more of the oxygen is still unaccounted for. To test if the oxygen is instead in atomic form, SOFIA-GREAT observed the R1 position of the bright molecular outflow from NGC1333-IRAS4A. The [OI] 63 um line is detected and spectrally resolved. From an intensity peak at +15 km/s, the intensity decreases until +50 km/s. The profile is similar to that of high-velocity (HV) H2O and CO 16-15, the latter observed simultaneously with [OI]. A radiative transfer analysis suggests that ~15% of the oxygen is in atomic form toward this shock position. The CO abundance is inferred to be ~10^-4 by a similar analysis, suggesting that this is the dominant oxygen carrier in the HV component. These results demonstrate that a large portion of the observed [OI] emission is part of the outflow. Further observations are required to verify whether this is a general trend.
With the Stratospheric Observatory for Infrared Astronomy (SOFIA) routinely operating science flights, we demonstrate that observations with the Faint Object infraRed CAmera for the SOFIA Telescope (FORCAST) can provide reliable estimates of the inte
We report the detection of complex molecules (HCOOCH_3, HCOOH and CH_3CN), signposts of a hot core like region, toward the low mass, Class 0 source NGC1333-IRAS4A. This is the second low mass protostar where such complex molecules have been searched
We report the discovery of water maser emission at frequencies above 1 THz. Using the GREAT instrument on SOFIA, we have detected emission in the 1.296411 THz 8(27)-7(34) transition of water toward three oxygen-rich evolved stars: W Hya, U Her, and V
The central area (40x40) of the bipolar nebula S106 was mapped in the OI line at 63.2 micron with high angular (6) and spectral resolution, using GREAT on board SOFIA. The OI emission distribution is compared to the CO 16-15, CII 158 micron, and CO 1
Complex organic molecules (COMs) have been observed towards several low-mass young stellar objects (LYSOs). Small and heterogeneous samples have so far precluded conclusions on typical COM abundances, as well as the origin(s) of abundance variations