ﻻ يوجد ملخص باللغة العربية
Motivated by map labeling, Funke, Krumpe, and Storandt [IWOCA 2016] introduced the following problem: we are given a sequence of $n$ disks in the plane. Initially, all disks have radius $0$, and they grow at constant, but possibly different, speeds. Whenever two disks touch, the one with the higher index disappears. The goal is to determine the elimination order, i.e., the order in which the disks disappear. We provide the first general subquadratic algorithm for this problem. Our solution extends to other shapes (e.g., rectangles), and it works in any fixed dimension. We also describe an alternative algorithm that is based on quadtrees. Its running time is $Obig(n big(log n + min { log Delta, log Phi }big)big)$, where $Delta$ is the ratio of the fastest and the slowest growth rate and $Phi$ is the ratio of the largest and the smallest distance between two disk centers. This improves the running times of previous algorithms by Funke, Krumpe, and Storandt [IWOCA 2016], Bahrdt et al. [ALENEX 2017], and Funke and Storandt [EuroCG 2017]. Finally, we give an $Omega(nlog n)$ lower bound, showing that our quadtree algorithms are almost tight.
We provide the solution for a fundamental problem of geometric optimization by giving a complete characterization of worst-case optimal disk coverings of rectangles: For any $lambdageq 1$, the critical covering area $A^*(lambda)$ is the minimum value
We improve the running times of $O(1)$-approximation algorithms for the set cover problem in geometric settings, specifically, covering points by disks in the plane, or covering points by halfspaces in three dimensions. In the unweighted case, Agarwa
In 1960, Asplund and Grunbaum proved that every intersection graph of axis-parallel rectangles in the plane admits an $O(omega^2)$-coloring, where $omega$ is the maximum size of a clique. We present the first asymptotic improvement over this six-deca
We give a polynomial-time constant-factor approximation algorithm for maximum independent set for (axis-aligned) rectangles in the plane. Using a polynomial-time algorithm, the best approximation factor previously known is $O(loglog n)$. The results
We consider the problem of finding textit{semi-matching} in bipartite graphs which is also extensively studied under various names in the scheduling literature. We give faster algorithms for both weighted and unweighted case. For the weighted case,