ﻻ يوجد ملخص باللغة العربية
We give a polynomial-time constant-factor approximation algorithm for maximum independent set for (axis-aligned) rectangles in the plane. Using a polynomial-time algorithm, the best approximation factor previously known is $O(loglog n)$. The results are based on a new form of recursive partitioning in the plane, in which faces that are constant-complexity and orthogonally convex are recursively partitioned into a constant number of such faces.
We study the Maximum Independent Set of Rectangles (MISR) problem: given a set of $n$ axis-parallel rectangles, find a largest-cardinality subset of the rectangles, such that no two of them overlap. MISR is a basic geometric optimization problem with
In 1960, Asplund and Grunbaum proved that every intersection graph of axis-parallel rectangles in the plane admits an $O(omega^2)$-coloring, where $omega$ is the maximum size of a clique. We present the first asymptotic improvement over this six-deca
We present improved results for approximating maximum-weight independent set ($MaxIS$) in the CONGEST and LOCAL models of distributed computing. Given an input graph, let $n$ and $Delta$ be the number of nodes and maximum degree, respectively, and le
Maximum independent set from a given set $D$ of unit disks intersecting a horizontal line can be solved in $O(n^2)$ time and $O(n^2)$ space. As a corollary, we design a factor 2 approximation algorithm for the maximum independent set problem on unit
We consider the problem of maintaining an approximate maximum independent set of geometric objects under insertions and deletions. We present data structures that maintain a constant-factor approximate maximum independent set for broad classes of f