ﻻ يوجد ملخص باللغة العربية
Decoding human brain activities via functional magnetic resonance imaging (fMRI) has gained increasing attention in recent years. While encouraging results have been reported in brain states classification tasks, reconstructing the details of human visual experience still remains difficult. Two main challenges that hinder the development of effective models are the perplexing fMRI measurement noise and the high dimensionality of limited data instances. Existing methods generally suffer from one or both of these issues and yield dissatisfactory results. In this paper, we tackle this problem by casting the reconstruction of visual stimulus as the Bayesian inference of missing view in a multiview latent variable model. Sharing a common latent representation, our joint generative model of external stimulus and brain response is not only deep in extracting nonlinear features from visual images, but also powerful in capturing correlations among voxel activities of fMRI recordings. The nonlinearity and deep structure endow our model with strong representation ability, while the correlations of voxel activities are critical for suppressing noise and improving prediction. We devise an efficient variational Bayesian method to infer the latent variables and the model parameters. To further improve the reconstruction accuracy, the latent representations of testing instances are enforced to be close to that of their neighbours from the training set via posterior regularization. Experiments on three fMRI recording datasets demonstrate that our approach can more accurately reconstruct visual stimuli.
Among the most impressive recent applications of neural decoding is the visual representation decoding, where the category of an object that a subject either sees or imagines is inferred by observing his/her brain activity. Even though there is an in
Foveated image reconstruction recovers full image from a sparse set of samples distributed according to the human visual systems retinal sensitivity that rapidly drops with eccentricity. Recently, the use of Generative Adversarial Networks was shown
The common view that our creativity is what makes us uniquely human suggests that incorporating research on human creativity into generative deep learning techniques might be a fruitful avenue for making their outputs more compelling and human-like.
We analyze the complex networks associated with brain electrical activity. Multichannel EEG measurements are first processed to obtain 3D voxel activations using the tomographic algorithm LORETA. Then, the correlation of the current intensity activat
Machine learning models are commonly trained end-to-end and in a supervised setting, using paired (input, output) data. Examples include recent super-resolution methods that train on pairs of (low-resolution, high-resolution) images. However, these e