ﻻ يوجد ملخص باللغة العربية
In this letter, we have constructed and experimentally investigated frustrated arrays of dipoles forming two-dimensional artificial spin ices with different lattice parameters (rectangular arrays with horizontal and vertical lattice spacings denoted by $a$ and $b$ respectively). Arrays with three different ratios $gamma =a/b = sqrt{2}$, $sqrt{3}$ and $sqrt{4}$ are studied. Theoretical calculations of low-energy demagnetized configurations for these same parameters are also presented. Experimental data for demagnetized samples confirm most of the theoretical results. However, the highest energy topology (doubly-charged monopoles) does not emerge in our theoretical model, while they are seen in experiments for large enough $gamma$. Our results also insinuate that magnetic monopoles may be almost free in rectangular lattices with a critical ratio $gamma = gamma_{c} = sqrt{3}$, supporting previous theoretical predictions.
Recently, significant interest has emerged in fabricated systems that mimic the behavior of geometrically-frustrated materials. We present the full realization of such an artificial spin ice system on a two-dimensional kagome lattice and demonstrate
In classical and quantum frustrated magnets the interactions in combination with the lattice structure impede the spins to order in optimal configurations at zero temperature. The theoretical interest in their classical realisations has been boosted
We investigate spin dynamics of artificial spin ice (ASI) where topological defects confine magnon modes in Ni$_{81}$Fe$_{19}$ nanomagnets arranged on an interconnected kagome lattice. Brillouin light scattering microscopy performed on magnetically d
Motivated by recent realizations of Dy$_{2}$Ti$_{2}$O$_{7}$ and Ho$_{2}$Ti$_{2}$O$_{7}$ spin ice thin films, and more generally by the physics of confined gauge fields, we study a model of spin ice thin film with surfaces perpendicular to the $[001]$
We report the dependence of the magnetization dynamics in a square artificial spin-ice lattice on the in-plane magnetic field angle. Using two complementary measurement techniques - broadband ferromagnetic resonance and micro-focused Brillouin light