ﻻ يوجد ملخص باللغة العربية
In the past few years, Generative Adversarial Network (GAN) became a prevalent research topic. By defining two convolutional neural networks (G-Network and D-Network) and introducing an adversarial procedure between them during the training process, GAN has ability to generate good quality images that look like natural images from a random vector. Besides image generation, GAN may have potential to deal with wide range of real world problems. In this paper, we follow the basic idea of GAN and propose a novel model for image saliency detection, which is called Supervised Adversarial Networks (SAN). Specifically, SAN also trains two models simultaneously: the G-Network takes natural images as inputs and generates corresponding saliency maps (synthetic saliency maps), and the D-Network is trained to determine whether one sample is a synthetic saliency map or ground-truth saliency map. However, different from GAN, the proposed method uses fully supervised learning to learn both G-Network and D-Network by applying class labels of the training set. Moreover, a novel kind of layer call conv-comparison layer is introduced into the D-Network to further improve the saliency performance by forcing the high-level feature of synthetic saliency maps and ground-truthes as similar as possible. Experimental results on Pascal VOC 2012 database show that the SAN model can generate high quality saliency maps for many complicate natural images.
Image retargeting is the task of making images capable of being displayed on screens with different sizes. This work should be done so that high-level visual information and low-level features such as texture remain as intact as possible to the human
Image recognition is an important topic in computer vision and image processing, and has been mainly addressed by supervised deep learning methods, which need a large set of labeled images to achieve promising performance. However, in most cases, lab
Salient object detection aims at detecting the most visually distinct objects and producing the corresponding masks. As the cost of pixel-level annotations is high, image tags are usually used as weak supervisions. However, an image tag can only be u
Weakly supervised object detection (WSOD), which is the problem of learning detectors using only image-level labels, has been attracting more and more interest. However, this problem is quite challenging due to the lack of location supervision. To ad
There is a heated debate on how to interpret the decisions provided by deep learning models (DLM), where the main approaches rely on the visualization of salient regions to interpret the DLM classification process. However, these approaches generally