ترغب بنشر مسار تعليمي؟ اضغط هنا

Surface buckling of phosphorene materials: determination, origin and influence on electronic structure

306   0   0.0 ( 0 )
 نشر من قبل Zhongwei Dai
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The surface structure of phosphorene crystals materials is determined using surface sensitive dynamical micro-spot low energy electron diffraction ({mu}LEED) analysis using a high spatial resolution low energy electron microscopy (LEEM) system. Samples of (textit{i}) crystalline cleaved black phosphorus (BP) at 300 K and (textit{ii}) exfoliated few-layer phosphorene (FLP) of about 10 nm thicknes, which were annealed at 573 K in vacuum were studied. In both samples, a significant surface buckling of 0.22 {AA} and 0.30 {AA}, respectively, is measured, which is one order of magnitude larger than previously reported. Using first principle calculations, the presence of surface vacancies is attributed not only to the surface buckling in BP and FLP, but also the previously reported intrinsic hole doping of phosphorene materials.

قيم البحث

اقرأ أيضاً

Phosphorene, a single atomic layer of black phosphorus, has recently emerged as a new twodimensional (2D) material that holds promise for electronic and photonic technology. Here we experimentally demonstrate that the electronic structure of few-laye r phosphorene varies significantly with the number of layers, in good agreement with theoretical predictions. The interband optical transitions cover a wide, technologically important spectrum range from visible to mid-infrared. In addition, we observe strong photoluminescence in few-layer phosphorene at energies that match well with the absorption edge, indicating they are direct bandgap semiconductors. The strongly layer-dependent electronic structure of phosphorene, in combination with its high electrical mobility, gives it distinct advantages over other twodimensional materials in electronic and opto-electronic applications.
Over the past thirty years, it has been consistently observed that surface engineering of colloidal nanocrystals (NC) is key to their performance parameters. In the case of lead chalcogenide NCs, for example, replacing thiols with halide anion surfac e termination has been shown to increase power conversion efficiency in NC-based solar cells. To gain insight into the origins of these improvements, we perform ab initio molecular dynamics (AIMD) on experimentally-relevant sized lead sulfide (PbS) NCs constructed with thiol or Cl, Br, and I anion surfaces. The surface of both the thiol- and halide-terminated NCs exhibit low and high-energy phonon modes with large thermal displacements not present in bulk PbS; however, halide anion surface termination reduces the overlap of the electronic wavefunctions with these vibration modes. These findings suggest that electron-phonon interactions will be reduced in the halide terminated NCs, a conclusion that is supported by analyzing the time-dependent evolution of the electronic energies and wavefunctions extracted from the AIMD. This work explains why electron-phonon interactions are crucial to charge carrier dynamics in NCs and how surface engineering can be applied to systematically control their electronic and phononic properties. Furthermore, we propose that the computationally efficient approach of gauging electron-phonon interaction implemented here can be used to guide the design of application-specific surface terminations for arbitrary nanomaterials.
Hexagonal layered crystalline materials, such as graphene, boron nitride, tungsten sulfate, and so on, have attracted enormous attentions, due to their unique combination of atomistic structures and superior thermal, mechanical, and physical properti es. Making use of mechanical buckling is a promising route to control their structural morphology and thus tune their physical properties, giving rise to many novel applications. In this paper, we employ finite element analysis (FEA), molecular dynamic (MD) simulations and continuum modeling to study the mechanical buckling of a column made of layered crystalline materials with the crystal layers parallel to the longitudinal axis. It is found that the mechanical buckling exhibits a gradual transition from a bending mode to a shear mode of instability with the reduction of slenderness ratio. As the slenderness ratio approaches to zero, the critical buckling strain {epsilon}cr converges to a finite value that is much smaller than the materials mechanical strength, indicating that it is realizable under appropriate experimental conditions. Such a mechanical buckling mode is anomalous and counter-intuitive. The critical buckling strain {epsilon}cr predicted by our continuum mechanics model agrees very well with the results from the FEA and MD simulations for a group of typical hexagonal layered crystalline materials. MD simulations on graphite indicate the continuum mechanics model is applicable down to a scale of 20 nm. This theoretical model also reveals that a high degree of elastic anisotropy is the origin for the anomalous mechanical buckling of a column made of layered crystalline materials in the absence of structural slenderness. This study provides avenues for engineering layered crystalline materials in various nano-materials and nano-devices via mechanical buckling.
Artificial monolayer black phosphorus, the so-called phosphorene has attracted global interest with its distinguished anisotropic optoelectronic and electronic properties. Here, we unraveled the shear-induced direct to indirect gap transition and ani sotropy diminution in phosphorene based on first-principles calculations. Lattice dynamic analysis demonstrated that phosphorene can sustain up to 10% applied shear strain. The band gap of phosphorene experiences a direct to indirect transition when 5% shear strain is applied. The electronic origin of direct to indirect gap transition from 1.54 eV at ambient condition to 1.22 eV at 10% shear strains for phosphorene was explored and the anisotropy diminution in phosphorene is discussed by calculating the maximum sound velocities, effective mass and decomposed charge density, which signals the undesired shear-induced direct to indirect gap transition in the applications of phosphorene for electronics and optoelectronics. On the other hand, the shear-induced electronic anisotropy properties suggest that phosphorene can be applied as the switcher in the nano electronic applications.
We investigated the unoccupied part of the electronic structure of the oxygen-deficient hafnium oxide (HfO$_{sim1.8}$) using soft x-ray absorption spectroscopy at O $K$ and Hf $N_3$ edges. Band-tail states beneath the unoccupied Hf 5$d$ band are obse rved in the O $K$-edge spectra; combined with ultraviolet photoemission spectrum, this indicates the non-negligible occupation of Hf 5$d$ state. However, Hf $N_3$-edge magnetic circular dichroism spectrum reveals the absence of a long-range ferromagnetic spin order in the oxide. Thus the small amount of $d$ electron gained by the vacancy formation does not show inter-site correlation, contrary to a recent report [M. Venkatesan {it et al.}, Nature {bf 430}, 630 (2004)].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا