ترغب بنشر مسار تعليمي؟ اضغط هنا

The electronic origin of shear-induced direct to indirect gap transition and anisotropy diminution in phosphorene

145   0   0.0 ( 0 )
 نشر من قبل Yan-ling Li
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Artificial monolayer black phosphorus, the so-called phosphorene has attracted global interest with its distinguished anisotropic optoelectronic and electronic properties. Here, we unraveled the shear-induced direct to indirect gap transition and anisotropy diminution in phosphorene based on first-principles calculations. Lattice dynamic analysis demonstrated that phosphorene can sustain up to 10% applied shear strain. The band gap of phosphorene experiences a direct to indirect transition when 5% shear strain is applied. The electronic origin of direct to indirect gap transition from 1.54 eV at ambient condition to 1.22 eV at 10% shear strains for phosphorene was explored and the anisotropy diminution in phosphorene is discussed by calculating the maximum sound velocities, effective mass and decomposed charge density, which signals the undesired shear-induced direct to indirect gap transition in the applications of phosphorene for electronics and optoelectronics. On the other hand, the shear-induced electronic anisotropy properties suggest that phosphorene can be applied as the switcher in the nano electronic applications.



قيم البحث

اقرأ أيضاً

Phosphorene, a single atomic layer of black phosphorus, has recently emerged as a new twodimensional (2D) material that holds promise for electronic and photonic technology. Here we experimentally demonstrate that the electronic structure of few-laye r phosphorene varies significantly with the number of layers, in good agreement with theoretical predictions. The interband optical transitions cover a wide, technologically important spectrum range from visible to mid-infrared. In addition, we observe strong photoluminescence in few-layer phosphorene at energies that match well with the absorption edge, indicating they are direct bandgap semiconductors. The strongly layer-dependent electronic structure of phosphorene, in combination with its high electrical mobility, gives it distinct advantages over other twodimensional materials in electronic and opto-electronic applications.
Quantum systems in confined geometries are host to novel physical phenomena. Examples include quantum Hall systems in semiconductors and Dirac electrons in graphene. Interest in such systems has also been intensified by the recent discovery of a larg e enhancement in photoluminescence quantum efficiency and a potential route to valleytronics in atomically thin layers of transition metal dichalcogenides, MX2 (M = Mo, W; X = S, Se, Te), which are closely related to the indirect to direct bandgap transition in monolayers. Here, we report the first direct observation of the transition from indirect to direct bandgap in monolayer samples by using angle resolved photoemission spectroscopy on high-quality thin films of MoSe2 with variable thickness, grown by molecular beam epitaxy. The band structure measured experimentally indicates a stronger tendency of monolayer MoSe2 towards a direct bandgap, as well as a larger gap size, than theoretically predicted. Moreover, our finding of a significant spin-splitting of 180 meV at the valence band maximum of a monolayer MoSe2 film could expand its possible application to spintronic devices.
Methylammonium lead iodide perovskites are considered direct bandgap semiconductors. Here we show that in fact they present a weakly indirect bandgap 60 meV below the direct bandgap transition. This is a consequence of spin-orbit coupling resulting i n Rashba-splitting of the conduction band. The indirect nature of the bandgap explains the apparent contradiction of strong absorption and long charge carrier lifetime. Under hydrostatic pressure from ambient to 325 MPa, Rashba splitting is reduced due to a pressure induced ordering of the crystal structure. The nature of the bandgap becomes increasingly more direct, resulting in five times faster charge carrier recombination, and a doubling of the radiative efficiency. At hydrostatic pressures above 325 MPa, MAPI undergoes a reversible phase transition resulting in a purely direct bandgap semiconductor. The pressure-induced changes suggest epitaxial and synthetic routes to higher efficiency optoelectronic devices.
Atomically thin films of III-VI post-transition metal chalcogenides (InSe and GaSe) form an interesting class of two-dimensional semiconductor that feature strong variations of their band gap as a function of the number of layers in the crystal [1-4] and, specifically for InSe, an earlier predicted crossover from a direct gap in the bulk [5,6] to a weakly indirect band gap in monolayers and bilayers [7-11]. Here, we apply angle resolved photoemission spectroscopy with submicrometer spatial resolution ($mu$ARPES) to visualise the layer-dependent valence band structure of mechanically exfoliated crystals of InSe. We show that for 1 layer and 2 layer InSe the valence band maxima are away from the $mathbf{Gamma}$-point, forming an indirect gap, with the conduction band edge known to be at the $mathbf{Gamma}$-point. In contrast, for six or more layers the bandgap becomes direct, in good agreement with theoretical predictions. The high-quality monolayer and bilayer samples enables us to resolve, in the photoluminescence spectra, the band-edge exciton (A) from the exciton (B) involving holes in a pair of deeper valence bands, degenerate at $mathbf{Gamma}$, with the splitting that agrees with both $mu$ARPES data and the results of DFT modelling. Due to the difference in symmetry between these two valence bands, light emitted by the A-exciton should be predominantly polarised perpendicular to the plane of the two-dimensional crystal, which we have verified for few-layer InSe crystals.
Transition metal dichalcogenide (TMD) materials have received enormous attention due to their extraodinary optical and electrical properties, among which MoS2 is the most typical one. As thickness increases from monolayer to multilayer, the photolumi nescence (PL) of MoS2 is gradually quenched due to the direct-to-indirect band gap transition. How to enhance PL response and decrease the layer dependence in multilayer MoS2 is still a challenging task. In this work, we report, for the first time, simultaneous generation of three PL peaks at around 1.3, 1.4 and 1.8 eV on multilayer MoS2 bubbles. The temperature dependent PL measurements indicate that the two peaks at 1.3 and 1.4 eV are phonon-assisted indirect-gap transitions while the peak at 1.8 eV is the direct-gap transition. Using first-principles calculations, the band structure evolution of multilayer MoS2 under strain is studied, from which the origin of the three PL peaks of MoS2 bubbles is further confirmed. Moreover, PL standing waves are observed in MoS2 bubbles that creates Newton-Ring-like patterns. This work demonstrates that the bubble structure may provide new opportunities for engineering the electronic structure and optical properties of layered materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا