ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulation Theorems via Pseudorandom Properties

146   0   0.0 ( 0 )
 نشر من قبل Bruno Loff
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We generalize the deterministic simulation theorem of Raz and McKenzie [RM99], to any gadget which satisfies certain hitting property. We prove that inner-product and gap-Hamming satisfy this property, and as a corollary we obtain deterministic simulation theorem for these gadgets, where the gadgets input-size is logarithmic in the input-size of the outer function. This answers an open question posed by G{o}{o}s, Pitassi and Watson [GPW15]. Our result also implies the previous results for the Indexing gadget, with better parameters than was previously known. A preliminary version of the results obtained in this work appeared in [CKL+17].



قيم البحث

اقرأ أيضاً

147 - Troy Lee , Rajat Mittal 2008
The tendency of semidefinite programs to compose perfectly under product has been exploited many times in complexity theory: for example, by Lovasz to determine the Shannon capacity of the pentagon; to show a direct sum theorem for non-deterministic communication complexity and direct product theorems for discrepancy; and in interactive proof systems to show parallel repetition theorems for restricted classes of games. Despite all these examples of product theorems--some going back nearly thirty years--it was only recently that Mittal and Szegedy began to develop a general theory to explain when and why semidefinite programs behave perfectly under product. This theory captured many examples in the literature, but there were also some notable exceptions which it could not explain--namely, an early parallel repetition result of Feige and Lovasz, and a direct product theorem for the discrepancy method of communication complexity by Lee, Shraibman, and Spalek. We extend the theory of Mittal and Szegedy to explain these cases as well. Indeed, to the best of our knowledge, our theory captures all examples of semidefinite product theorems in the literature.
Halfspaces or linear threshold functions are widely studied in complexity theory, learning theory and algorithm design. In this work we study the natural problem of constructing pseudorandom generators (PRGs) for halfspaces over the sphere, aka spher ical caps, which besides being interesting and basic geometric objects, also arise frequently in the analysis of various randomized algorithms (e.g., randomized rounding). We give an explicit PRG which fools spherical caps within error $epsilon$ and has an almost optimal seed-length of $O(log n + log(1/epsilon) cdot loglog(1/epsilon))$. For an inverse-polynomially growing error $epsilon$, our generator has a seed-length optimal up to a factor of $O( log log {(n)})$. The most efficient PRG previously known (due to Kane, 2012) requires a seed-length of $Omega(log^{3/2}{(n)})$ in this setting. We also obtain similar constructions to fool halfspaces with respect to the Gaussian distribution. Our construction and analysis are significantly different from previous works on PRGs for halfspaces and build on the iterative dimension reduction ideas of Kane et. al. (2011) and Celis et. al. (2013), the emph{classical moment problem} from probability theory and explicit constructions of emph{orthogonal designs} based on the seminal work of Bourgain and Gamburd (2011) on expansion in Lie groups.
We construct pseudorandom generators of seed length $tilde{O}(log(n)cdot log(1/epsilon))$ that $epsilon$-fool ordered read-once branching programs (ROBPs) of width $3$ and length $n$. For unordered ROBPs, we construct pseudorandom generators with see d length $tilde{O}(log(n) cdot mathrm{poly}(1/epsilon))$. This is the first improvement for pseudorandom generators fooling width $3$ ROBPs since the work of Nisan [Combinatorica, 1992]. Our constructions are based on the `iterated milder restrictions approach of Gopalan et al. [FOCS, 2012] (which further extends the Ajtai-Wigderson framework [FOCS, 1985]), combined with the INW-generator [STOC, 1994] at the last step (as analyzed by Braverman et al. [SICOMP, 2014]). For the unordered case, we combine iterated milder restrictions with the generator of Chattopadhyay et al. [CCC, 2018]. Two conceptual ideas that play an important role in our analysis are: (1) A relabeling technique allowing us to analyze a relabeled version of the given branching program, which turns out to be much easier. (2) Treating the number of colliding layers in a branching program as a progress measure and showing that it reduces significantly under pseudorandom restrictions. In addition, we achieve nearly optimal seed-length $tilde{O}(log(n/epsilon))$ for the classes of: (1) read-once polynomials on $n$ variables, (2) locally-monotone ROBPs of length $n$ and width $3$ (generalizing read-once CNFs and DNFs), and (3) constant-width ROBPs of length $n$ having a layer of width $2$ in every consecutive $mathrm{poly}log(n)$ layers.
We prove new results on the polarizing random walk framework introduced in recent works of Chattopadhyay {et al.} [CHHL19,CHLT19] that exploit $L_1$ Fourier tail bounds for classes of Boolean functions to construct pseudorandom generators (PRGs). We show that given a bound on the $k$-th level of the Fourier spectrum, one can construct a PRG with a seed length whose quality scales with $k$. This interpolates previous works, which either require Fourier bounds on all levels [CHHL19], or have polynomial dependence on the error parameter in the seed length [CHLT10], and thus answers an open question in [CHLT19]. As an example, we show that for polynomial error, Fourier bounds on the first $O(log n)$ levels is sufficient to recover the seed length in [CHHL19], which requires bounds on the entire tail. We obtain our results by an alternate analysis of fractional PRGs using Taylors theorem and bounding the degree-$k$ Lagrange remainder term using multilinearity and random restrictions. Interestingly, our analysis relies only on the emph{level-k unsigned Fourier sum}, which is potentially a much smaller quantity than the $L_1$ notion in previous works. By generalizing a connection established in [CHH+20], we give a new reduction from constructing PRGs to proving correlation bounds. Finally, using these improvements we show how to obtain a PRG for $mathbb{F}_2$ polynomials with seed length close to the state-of-the-art construction due to Viola [Vio09], which was not known to be possible using this framework.
We propose the concept of pseudorandom states and study their constructions, properties, and applications. Under the assumption that quantum-secure one-way functions exist, we present concrete and efficient constructions of pseudorandom states. The n on-cloning theorem plays a central role in our study---it motivates the proper definition and characterizes one of the important properties of pseudorandom quantum states. Namely, there is no efficient quantum algorithm that can create more copies of the state from a given number of pseudorandom states. As the main application, we prove that any family of pseudorandom states naturally gives rise to a private-key quantum money scheme.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا