ﻻ يوجد ملخص باللغة العربية
Halfspaces or linear threshold functions are widely studied in complexity theory, learning theory and algorithm design. In this work we study the natural problem of constructing pseudorandom generators (PRGs) for halfspaces over the sphere, aka spherical caps, which besides being interesting and basic geometric objects, also arise frequently in the analysis of various randomized algorithms (e.g., randomized rounding). We give an explicit PRG which fools spherical caps within error $epsilon$ and has an almost optimal seed-length of $O(log n + log(1/epsilon) cdot loglog(1/epsilon))$. For an inverse-polynomially growing error $epsilon$, our generator has a seed-length optimal up to a factor of $O( log log {(n)})$. The most efficient PRG previously known (due to Kane, 2012) requires a seed-length of $Omega(log^{3/2}{(n)})$ in this setting. We also obtain similar constructions to fool halfspaces with respect to the Gaussian distribution. Our construction and analysis are significantly different from previous works on PRGs for halfspaces and build on the iterative dimension reduction ideas of Kane et. al. (2011) and Celis et. al. (2013), the emph{classical moment problem} from probability theory and explicit constructions of emph{orthogonal designs} based on the seminal work of Bourgain and Gamburd (2011) on expansion in Lie groups.
We construct pseudorandom generators of seed length $tilde{O}(log(n)cdot log(1/epsilon))$ that $epsilon$-fool ordered read-once branching programs (ROBPs) of width $3$ and length $n$. For unordered ROBPs, we construct pseudorandom generators with see
We prove new results on the polarizing random walk framework introduced in recent works of Chattopadhyay {et al.} [CHHL19,CHLT19] that exploit $L_1$ Fourier tail bounds for classes of Boolean functions to construct pseudorandom generators (PRGs). We
We show that the rank of a depth-3 circuit (over any field) that is simple, minimal and zero is at most k^3log d. The previous best rank bound known was 2^{O(k^2)}(log d)^{k-2} by Dvir and Shpilka (STOC 2005). This almost resolves the rank question f
The information geometry of the 2-manifold of gamma probability density functions provides a framework in which pseudorandom number generators may be evaluated using a neighbourhood of the curve of exponential density functions. The process is illust
Linear pseudorandom number generators are very popular due to their high speed, to the ease with which generators with a sizable state space can be created, and to their provable theoretical properties. However, they suffer from linear artifacts whic