ترغب بنشر مسار تعليمي؟ اضغط هنا

Making Neural Programming Architectures Generalize via Recursion

155   0   0.0 ( 0 )
 نشر من قبل Jonathon Cai
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Empirically, neural networks that attempt to learn programs from data have exhibited poor generalizability. Moreover, it has traditionally been difficult to reason about the behavior of these models beyond a certain level of input complexity. In order to address these issues, we propose augmenting neural architectures with a key abstraction: recursion. As an application, we implement recursion in the Neural Programmer-Interpreter framework on four tasks: grade-school addition, bubble sort, topological sort, and quicksort. We demonstrate superior generalizability and interpretability with small amounts of training data. Recursion divides the problem into smaller pieces and drastically reduces the domain of each neural network component, making it tractable to prove guarantees about the overall systems behavior. Our experience suggests that in order for neural architectures to robustly learn program semantics, it is necessary to incorporate a concept like recursion.

قيم البحث

اقرأ أيضاً

117 - Qiang Liu , Lemeng Wu , Dilin Wang 2019
We develop a progressive training approach for neural networks which adaptively grows the network structure by splitting existing neurons to multiple off-springs. By leveraging a functional steepest descent idea, we derive a simple criterion for deci ding the best subset of neurons to split and a splitting gradient for optimally updating the off-springs. Theoretically, our splitting strategy is a second-order functional steepest descent for escaping saddle points in an $infty$-Wasserstein metric space, on which the standard parametric gradient descent is a first-order steepest descent. Our method provides a new computationally efficient approach for optimizing neural network structures, especially for learning lightweight neural architectures in resource-constrained settings.
We propose a novel hardware and software co-exploration framework for efficient neural architecture search (NAS). Different from existing hardware-aware NAS which assumes a fixed hardware design and explores the neural architecture search space only, our framework simultaneously explores both the architecture search space and the hardware design space to identify the best neural architecture and hardware pairs that maximize both test accuracy and hardware efficiency. Such a practice greatly opens up the design freedom and pushes forward the Pareto frontier between hardware efficiency and test accuracy for better design tradeoffs. The framework iteratively performs a two-level (fast and slow) exploration. Without lengthy training, the fast exploration can effectively fine-tune hyperparameters and prune inferior architectures in terms of hardware specifications, which significantly accelerates the NAS process. Then, the slow exploration trains candidates on a validation set and updates a controller using the reinforcement learning to maximize the expected accuracy together with the hardware efficiency. Experiments on ImageNet show that our co-exploration NAS can find the neural architectures and associated hardware design with the same accuracy, 35.24% higher throughput, 54.05% higher energy efficiency and 136x reduced search time, compared with the state-of-the-art hardware-aware NAS.
Interpretation of Deep Neural Networks (DNNs) training as an optimal control problem with nonlinear dynamical systems has received considerable attention recently, yet the algorithmic development remains relatively limited. In this work, we make an a ttempt along this line by reformulating the training procedure from the trajectory optimization perspective. We first show that most widely-used algorithms for training DNNs can be linked to the Differential Dynamic Programming (DDP), a celebrated second-order method rooted in the Approximate Dynamic Programming. In this vein, we propose a new class of optimizer, DDP Neural Optimizer (DDPNOpt), for training feedforward and convolution networks. DDPNOpt features layer-wise feedback policies which improve convergence and reduce sensitivity to hyper-parameter over existing methods. It outperforms other optimal-control inspired training methods in both convergence and complexity, and is competitive against state-of-the-art first and second order methods. We also observe DDPNOpt has surprising benefit in preventing gradient vanishing. Our work opens up new avenues for principled algorithmic design built upon the optimal control theory.
A significant effort has been made to train neural networks that replicate algorithmic reasoning, but they often fail to learn the abstract concepts underlying these algorithms. This is evidenced by their inability to generalize to data distributions that are outside of their restricted training sets, namely larger inputs and unseen data. We study these generalization issues at the level of numerical subroutines that comprise common algorithms like sorting, shortest paths, and minimum spanning trees. First, we observe that transformer-based sequence-to-sequence models can learn subroutines like sorting a list of numbers, but their performance rapidly degrades as the length of lists grows beyond those found in the training set. We demonstrate that this is due to attention weights that lose fidelity with longer sequences, particularly when the input numbers are numerically similar. To address the issue, we propose a learned conditional masking mechanism, which enables the model to strongly generalize far outside of its training range with near-perfect accuracy on a variety of algorithms. Second, to generalize to unseen data, we show that encoding numbers with a binary representation leads to embeddings with rich structure once trained on downstream tasks like addition or multiplication. This allows the embedding to handle missing data by faithfully interpolating numbers not seen during training.
The effectiveness of shortcut/skip-connection has been widely verified, which inspires massive explorations on neural architecture design. This work attempts to find an effective way to design new network architectures. It is discovered that the main difference between network architectures can be reflected in their recursion formulas. Based on this, a methodology is proposed to design novel network architectures from the perspective of mathematical formulas. Afterwards, a case study is provided to generate an improved architecture based on ResNet. Furthermore, the new architecture is compared with ResNet and then tested on ResNet-based networks. Massive experiments are conducted on CIFAR and ImageNet, which witnesses the significant performance improvements provided by the architecture.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا