ﻻ يوجد ملخص باللغة العربية
We present an analytical and numerical study of the orbital migration and resonance capture of fictitious two-planet systems with masses in the super-Earth range undergoing Type-I migration. We find that, depending on the flare index and proximity to the central star, the average value of the period ratio, $P_2/P_1$, between both planets may show a significant deviation with respect to the nominal value. For planets trapped in the 2:1 commensurability, offsets may reach values on the order of $0.1$ for orbital periods on the order of $1$ day, while systems in the 3:2 mean-motion resonance (MMR) show much smaller offsets for all values of the semimajor axis. These properties are in good agreement with the observed distribution of near-resonant exoplanets, independent of their detection method. We show that 2:1-resonant systems far from the star, such as HD82943 and HR8799, are characterized by very small resonant offsets, while higher values are typical of systems discovered by Kepler with orbital periods approximately a few days. Conversely, planetary systems in the vicinity of the 3:2 MMR show little offset with no significant dependence on the orbital distance. In conclusion, our results indicate that the distribution of Kepler planetary systems around the 2:1 and 3:2 MMR are consistent with resonant configurations obtained as a consequence of a smooth migration in a laminar flared disk, and no external forces are required to induce the observed offset or its dependence with the commensurability or orbital distance from the star.
We present six years of new radial-velocity data from the Anglo-Australian and Magellan Telescopes on the HD 73526 2:1 resonant planetary system. We investigate both Keplerian and dynamical (interacting) fits to these data, yielding four possible con
Embedded in the gaseous protoplanetary disk, Jupiter and Saturn naturally become trapped in 3:2 resonance and migrate outward. This serves as the basis of the Grand Tack model. However, previous hydrodynamical simulations were restricted to isotherma
The aim of this work is a detailed analysis of transit light curves from TrES-1 and TrES-2, obtained over a period of three to four years, in order to search for variabilities in observed mid-transit times and to set limits for the presence of additi
Mean motion resonances [MMRs] play an important role in the formation and evolution of planetary systems and have significantly influenced the orbital properties and distribution of planets and minor planets in the solar system as well as exo-planeta
The lower limit to the distribution of orbital periods P for the current population of close-in exoplanets shows a distinctive discontinuity located at approximately one Jovian mass. Most smaller planets have orbital periods longer than P~2.5 days, w