ﻻ يوجد ملخص باللغة العربية
We present six years of new radial-velocity data from the Anglo-Australian and Magellan Telescopes on the HD 73526 2:1 resonant planetary system. We investigate both Keplerian and dynamical (interacting) fits to these data, yielding four possible configurations for the system. The new data now show that both resonance angles are librating, with amplitudes of 40 degrees and 60 degrees, respectively. We then perform long-term dynamical stability tests to differentiate these solutions, which only differ significantly in the masses of the planets. We show that while there is no clearly preferred system inclination, the dynamical fit with i=90 degrees provides the best combination of goodness-of-fit and long-term dynamical stability.
We present 63 new multi-site radial velocity measurements of the K1III giant HD 76920, which was recently reported to host the most eccentric planet known to orbit an evolved star. We focussed our observational efforts on the time around the predicte
We present an analysis of the HD 82943 planetary system based on a radial velocity data set that combines new measurements obtained with the Keck telescope and the CORALIE measurements published in graphical form. We examine simultaneously the goodne
We present an analytical and numerical study of the orbital migration and resonance capture of fictitious two-planet systems with masses in the super-Earth range undergoing Type-I migration. We find that, depending on the flare index and proximity to
The detection of a super-Earth and three mini-Neptunes transiting the bright ($V$ = 9.2 mag) star HD 108236 (also known as TOI-1233) was recently reported on the basis of TESS and ground-based light curves. We perform a first characterisation of the
We have numerically explored the stable planetary geometry for the multiple systems involved in a 2:1 mean motion resonance, and herein we mainly study the HD 82943 system by employing two sets of the orbital parameters (Mayor et al. 2004; Ji et al.