ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral Evidence for an Inner Carbon-Rich Circumstellar Dust Belt in the Young HD36546 A-Star System

61   0   0.0 ( 0 )
 نشر من قبل Carey Lisse
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the NASA/IRTF SpeX & BASS spectrometers we have obtained novel 0.7 - 13 um observations of the newly imaged HD36546 debris disk system. The SpeX spectrum is most consistent with the photospheric emission expected from an Lstar ~ 20 Lsun, solar abundance A1.5V star with little/no extinction and excess emission from circumstellar dust detectable beyond 4.5 um. Non-detections of CO emission lines and accretion signatures point to the gas poor circumstellar environment of a very old transition disk. Combining the SpeX and BASS spectra with archival WISE/AKARI/IRAS/Herschel photometery, we find an outer cold dust belt at ~135K and 20 - 40 AU from the primary, likely coincident with the disk imaged by Subaru (Currie et al. 2017), and a new second inner belt with temperature ~570K and an unusual, broad SED maximum in the 6 - 9 um region, tracing dust at 1.1 - 2.2 AU. An SED maximum at 6 - 9 um has been reported in just two other A-star systems, HD131488 and HD121191, both of ~10 Myr age (Melis et al. 2013). From Spitzer, we have also identified the ~12 Myr old A7V HD148567 system as having similar 5 - 35 um excess spectral features (Mittal et al. 2015). The Spitzer data allows us to rule out water emission and rule in carbonaceous materials - organics, carbonates, SiC - as the source of the 6 - 9 um excess. Assuming a common origin for the 4 young Astar systems disks, we suggest they are experiencing an early era of carbon-rich planetesimal processing.



قيم البحث

اقرأ أيضاً

125 - C. Pinte , D.J. Price , F. Menard 2018
Discs of gas and dust surrounding young stars are the birthplace of planets. However, direct detection of protoplanets forming within discs has proved elusive to date. We present the detection of a large, localized deviation from Keplerian velocity i n the protoplanetary disc surrounding the young star HD163296. The observed velocity pattern is consistent with the dynamical effect of a two Jupiter-mass planet orbiting at a radius $approx$ 260au from the star.
The circumstellar environments of classical T Tauri stars are challenging to directly image because of their high star-to-disk contrast ratio. One method to overcome this is by using imaging polarimetry where scattered and consequently polarised star light from the stars circumstellar disk can be separated from the unpolarised light of the central star. We present images of the circumstellar environment of SU Aur, a classical T Tauri star at the transition of T Tauri to Herbig stars. The images directly show that the disk extends out to ~500 au with an inclination angle of $sim$ 50$^circ$. Using interpretive models, we derived very small grains in the surface layers of its disk, with a very steep size- and surface-density distribution. Additionally, we resolved a large and extended nebulosity in our images that is most likely a remnant of the prenatal molecular cloud. The position angle of the disk, determined directly from our images, rules out a polar outflow or jet as the cause of this large-scale nebulosity.
166 - Tristan Guillot 2010
Context: CoRoT-2b is one of the most anomalously large exoplanet known. Given its large mass, its large radius cannot be explained by standard evolution models. Interestingly, the planets parent star is an active, rapidly rotating solar-like star wit h a large fraction (7 to 20%) of spots. Aims: We want to provide constraints on the properties of the star-planet system and understand whether the planets inferred large size may be due to a systematic error on the inferred parameters, and if not, how it may be explained. Methods: We combine stellar and planetary evolution codes based on all available spectroscopic and photometric data to obtain self-consistent constraints on the system parameters. Results: We find no systematic error in the stellar modeling (including spots and stellar activity) that would yield the required ~10% reduction in size for the star and thus the planet. Two classes of solutions are found: the usual main sequence solution for the star yields for the planet a mass of 3.67+/-0.13 Mjup, a radius of 1.55+/-0.03 Rjup for an age that is at least 130Ma, and should be less than 500Ma given the stars fast rotation and significant activity. We identify another class of solutions on the pre-main sequence, in which case the planets mass is 3.45pm 0.27 Mjup, its radius is 1.50+/-0.06 Rjup for an age between 30 and 40 Ma. These extremely young solutions provide the simplest explanation for the planets size which can then be matched by a simple contraction from an initially hot, expanded state, provided the atmospheric opacities are increased by a factor ~3 compared to usual assumptions for solar compositions atmospheres. Other solutions imply in any case that the present inflated radius of CoRoT-2b is transient and the result of an event that occurred less than 20 Ma ago: a giant impact with another Jupiter-mass planet, or interactions with another object in the system which caused a significant rise of the eccentricity followed by the rapid circularization of its orbit. Conclusions: Additional observations of CoRoT-2 that could help understanding this system include searches for infrared excess and the presence of a debris disk and searches for additional companions. The determination of a complete infrared lightcurve including both the primary and secondary transits would also be extremely valuable to constrain the planets atmospheric properties and to determine the planet-to-star radius ratio in a manner less vulnerable to systematic errors due to stellar activity.
Na I D lines in the spectrum of the young binary KH 15D have been analyzed in detail. We find an excess absorption component that may be attributed to foreground interstellar absorption, and to gas possibly associated with the solids in the circumbin ary disk. The derived column density is log N_NaI = 12.5 cm^-2, centered on a radial velocity that is consistent with the systemic velocity. Subtracting the likely contribution of the ISM leaves log N_NaI ~ 12.3 cm^-2. There is no detectable change in the gas column density across the knife edge formed by the opaque grain disk, indicating that the gas and solids have very different scale heights, with the solids being highly settled. Our data support a picture of this circumbinary disk as being composed of a very thin particulate grain layer composed of millimeter-sized or larger objects that are settled within whatever remaining gas may be present. This phase of disk evolution has been hypothesized to exist as a prelude to the formation of planetesimals through gravitational fragmentation, and is expected to be short-lived if much gas were still present in such a disk. Our analysis also reveals the presence of excess Na I emission relative to the comparison spectrum at the radial velocity of the currently visible star that plausibly arises within the magnetosphere of this still-accreting young star.
The growth of dust grains in protoplanetary disks is a necessary first step towards planet formation. This growth has been inferred via observations of thermal dust emission towards mature protoplanetary systems (age >2 million years) with masses tha t are, on average, similar to Neptune3. In contrast, the majority of confirmed exoplanets are heavier than Neptune. Given that young protoplanetary disks are more massive than their mature counterparts, this suggests that planet formation starts early, but evidence for grain growth that is spatially and temporally coincident with a massive reservoir in young disks remains scarce. Here, we report observations on a lack of emission of carbon monoxide isotopologues within the inner ~15 au of a very young (age ~100,000 years) disk around the Solar-type protostar TMC1A. By using the absence of spatially resolved molecular line emission to infer the gas and dust content of the disk, we conclude that shielding by millimeter-size grains is responsible for the lack of emission. This suggests that grain growth and millimeter-size dust grains can be spatially and temporally coincident with a mass reservoir sufficient for giant planet formation. Hence, planet formation starts during the earliest, embedded phases in the life of young stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا