ﻻ يوجد ملخص باللغة العربية
$[Background]$ Measurements of the neutron charge form factor, $G^n_E$, are challenging due to the fact that the neutron has no net charge. In addition, measurements of the neutron form factors must use nuclear targets which require accurately accounting for nuclear effects. Extracting $G^n_E$ with different targets and techniques provides an important test of our handling of these effects. $[Purpose]$ The goal of the measurement was to use an inclusive asymmetry measurement technique to extract the neutron charge form factor at a four-momentum transfer of $1~(rm{GeV/c})^2$. This technique has very different systematic uncertainties than traditional exclusive measurements and thus serves as an independent check of whether nuclear effects have been taken into account correctly. $[Method]$ The inclusive quasi-elastic reaction $^3overrightarrow{rm{He}}(overrightarrow{e},e)$ was measured at Jefferson Lab. The neutron electric form factor, $G_E^n$, was extracted at $Q^2 = 0.98~(rm{GeV/c})^2$ from ratios of electron-polarization asymmetries measured for two orthogonal target spin orientations. This $Q^2$ is high enough that the sensitivity to $G_E^n$ is not overwhelmed by the neutron magnetic contribution, and yet low enough that explicit neutron detection is not required to suppress pion production. $[Results]$ The neutron electric form factor, $G_E^n$, was determined to be $0.0414pm0.0077;{(stat)}pm0.0022;{(syst)}$; providing the first high precision inclusive extraction of the neutrons charge form factor. $[Conclusions]$ The use of the inclusive quasi-elastic $^3overrightarrow{rm{He}}(overrightarrow{e},e)$ with a four-momentum transfer near $1~(rm{GeV/c})^2$ has been used to provide a unique measurement of $G^n_E$. This new result provides a systematically independent validation of the exclusive extraction technique results.
The spin polarizabilities of the nucleon describe how the spin of the nucleon responds to an incident polarized photon. The most model-independent way to measure the nucleon spin polarizabilities is through polarized Compton scattering. Double-polari
Measurements of the electric and the magnetic neutron form factors have been performed at the Mainz Microtron for more than 20 years. These MAMI experiments are reviewed in the context of measurements from other groups, and future measurements at MAMI are outlined.
We report the measurement of beam-target double-spin asymmetries ($A_text{LT}$) in the inclusive production of identified hadrons, $vec{e}~$+$~^3text{He}^{uparrow}rightarrow h+X$, using a longitudinally polarized 5.9 GeV electron beam and a transvers
The electric form factor of the neutron was determined from studies of the reaction He3(e,en)pp in quasi-elastic kinematics in Hall A at Jefferson Lab. Longitudinally polarized electrons were scattered off a polarized target in which the nuclear pola
The ratio of the electric and magnetic form factor of the proton, $mu_p G_E^p/G_M^p$, has been measured for elastic electron-proton scattering with polarized beam and target up to four-momentum transfer squared, $Q^2=5.66$ (GeV/c)$^2$ using the doubl