ﻻ يوجد ملخص باللغة العربية
The ratio of the electric and magnetic form factor of the proton, $mu_p G_E^p/G_M^p$, has been measured for elastic electron-proton scattering with polarized beam and target up to four-momentum transfer squared, $Q^2=5.66$ (GeV/c)$^2$ using the double spin asymmetry for target spin orientation aligned nearly perpendicular to the beam momentum direction. This measurement of $mu_p G_E^p/G_M^p$ agrees with the $Q^2$ dependence of previous recoil polarization data and reconfirms the discrepancy at high $Q^2$ between the Rosenbluth and the polarization-transfer method with a different measurement technique and systematic uncertainties uncorrelated to those of the recoil-polarization measurements. The form factor ratio at $Q^2$=2.06 (GeV/c)$^2$ has been measured as $mu_p G_E^p/G_M^p = 0.720 pm 0.176_{stat} pm 0.039_{sys}$, which is in agreement with an earlier measurement with the polarized target technique at similar kinematics. The form factor ratio at $Q^2$=5.66 (GeV/c)$^2$ has been determined as $mu_p G_E^p/G_M^p=0.244pm0.353_{stat}pm0.013_{sys}$, which represents the highest $Q^2$ reach with the double spin asymmetry with polarized target to date.
We present an updated extraction of the proton electromagnetic form factor ratio, mu_p G_E/G_M, at low Q^2. The form factors are sensitive to the spatial distribution of the proton, and precise measurements can be used to constrain models of the prot
We report a new, high-precision measurement of the proton elastic form factor ratio mu_p G_E/G_M for the four-momentum transfer squared Q^2 = 0.3-0.7 (GeV/c)^2. The measurement was performed at Jefferson Lab (JLab) in Hall A using recoil polarimetry.
We report the first precision measurement of the proton electric to magnetic form factor ratio from spin-dependent elastic scattering of longitudinally polarized electrons from a polarized hydrogen internal gas target. The measurement was performed a
We report on the first measurement of double-spin asymmetry, A_LL, of electrons from the decays of hadrons containing heavy flavor in longitudinally polarized p+p collisions at sqrt(s)=200 GeV for p_T= 0.5 to 3.0 GeV/c. The asymmetry was measured at
Using data samples collected with the BESIII detector at the BEPCII collider, we measure the Born cross section of $e^{+}e^{-}rightarrow pbar{p}$ at 12 center-of-mass energies from 2232.4 to 3671.0 MeV. The corresponding effective electromagnetic for