ﻻ يوجد ملخص باللغة العربية
Cavity quantum electrodynamics (CQED) investigates the interaction between light confined in a resonator and particles, such as atoms. In recent years, CQED experiments have reached the optical domain resulting in many interesting applications in the realm of quantum information processing. For many of these application it is necessary to overcome limitations imposed by photon loss. In this context whispering-gallery mode (WGM) resonators have obtained significant interest. Besides their small mode volume and their ultra high quality, they also exhibit favorable polarization properties that give rise to chiral light--matter interaction. In this chapter, we will discuss the origin and the consequences of these chiral features and we review recent achievements in this area.
Cavity quantum electrodynamics, which explores the granularity of light by coupling a resonator to a nonlinear emitter, has played a foundational role in the development of modern quantum information science and technology. In parallel, the field of
We experimentally realize a Fabry-Perot-type optical microresonator near the cesium D2 line wavelength based on a tapered optical fiber, equipped with two fiber Bragg gratings which enclose a sub-wavelength diameter waist. Owing to the very low taper
Cavity quantum electrodynamic schemes for quantum gates are amongst the earliest quantum computing proposals. Despite continued progress, and the dramatic recent demonstration of photon blockade, there are still issues with optimal coupling and gate
We experimentally realize an optical fiber ring resonator that includes a tapered section with subwavelength-diameter waist. In this section, the guided light exhibits a significant evanescent field which allows for efficient interfacing with optical
We present a general framework for cavity quantum electrodynamics with strongly frequency-dependent mirrors. The method is applicable to a variety of reflectors exhibiting sharp internal resonances as can be realized, for example, with photonic-cryst