ﻻ يوجد ملخص باللغة العربية
Iron pnictides are the only known family of unconventional high-temperature superconductors besides cuprates. Until recently, it was widely accepted that superconductivity is spin-fluctuation driven and intimately related to their fermiology, specifically, hole and electron pockets separated by the same wave vector that characterizes the dominant spin fluctuations, and supporting order parameters (OP) of opposite signs. This picture was questioned after the discovery of a new family, based on the FeSe layers, either intercalated or in the monolayer form. The critical temperatures there reach ~40 K, the same as in optimally doped bulk FeSe - despite the fact that intercalation removes the hole pockets from the Fermi level and, seemingly, undermines the basis for the spin-fluctuation theory and the idea of a sign-changing OP. In this paper, using the recently proposed phase-sensitive quasiparticle interference technique, we show that in LiOH intercalated FeSe compound the OP does change sign, albeit within the electronic pockets, and not between the hole and electron ones. This result unifies the pairing mechanism of iron based superconductors with or without the hole Fermi pockets and supports the conclusion that spin fluctuations play the key role in electron pairing.
The pressure-induced reemergence of the second high-Tc superconducting phase (SC-II) in the alkali-metal intercalated AxFe2-ySe2 (A = K, Rb, Cs, Tl) remains an enigma and proper characterizations on the superconducting- and normal-state properties of
Hydrothermal synthesis is described of layered lithium iron selenide hydroxides Li1-xFex(OH)Fe1-ySe (x ~ 0.2; 0.02 < y < 0.15) with a wide range of iron site vacancy concentrations in the iron selenide layers. This iron vacancy concentration is revea
Josephson current between two superconductors provides a phase sensitive tool for probing their pairing symmetries. Here we fabricate and study experimentally high-quality Josephson junctions between a conventional s-wave superconductor Nb and a mult
Quasiparticle interference (QPI) by means of scanning tunneling microscopy/spectroscopy (STM/STS), angle resolved photoemission spectroscopy (ARPES), and multi-orbital tight bind- ing calculations are used to investigate the band structure and superc
The superconductivity of a kagome superconductor CsV3Sb5 is studied by scanning tunneling microscopy / spectroscopy at an ultralow temperature with high resolution. Two kinds of superconducting gaps with multiple sets of coherent peaks and residual z