ترغب بنشر مسار تعليمي؟ اضغط هنا

The impact of atomic data selection on nebular abundance determinations

119   0   0.0 ( 0 )
 نشر من قبل Leticia Juan De Dios
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Atomic data are an important source of systematic uncertainty in our determinations of nebular chemical abundances. However, we do not have good estimates of these uncertainties since it is very difficult to assess the accuracy of the atomic data involved in the calculations. We explore here the size of these uncertainties by using 52 different sets of transition probabilities and collision strengths, and all their possible combinations, to calculate the physical conditions and the total abundances of O, N, S, Ne, Cl, and Ar for a sample of planetary nebulae and H II regions. We find that atomic data variations introduce differences in the derived abundance ratios as low as 0.1$-$0.2 dex at low density, but that reach or surpass 0.6$-$0.8 dex at densities above 10$^{4}$ cm$^{-3}$ in several abundance ratios, like O/H and N/O. Removing from the 52 datasets the four datasets that introduce the largest differences, the total uncertainties are reduced, but high density objects still reach uncertainty factors of four for their values of O/H and N/O. We identify the atomic data that introduce most of the uncertainty, which involves the ions used to determine density, namely, the transition probabilities of the S$^{+}$, O$^{+}$, Cl$^{++}$, and Ar$^{+3}$ density diagnostic lines, and the collision strengths of Ar$^{+3}$. Improved calculations of these data will be needed in order to derive more reliable values of chemical abundances in high density nebulae. In the meantime, our results can be used to estimate the uncertainties introduced by atomic data in nebular abundance determinations.

قيم البحث

اقرأ أيضاً

This paper aims at providing aperture corrections for emission lines in a sample of spiral galaxies from the Calar Alto Legacy Integral Field Area Survey (CALIFA) database. In particular, we explore the behavior of the log([OIII]5007/Hbeta)/([NII]658 3/Halpha) (O3N2) and log[NII]6583/Halpha (N2) flux ratios since they are closely connected to different empirical calibrations of the oxygen abundances in star forming galaxies. We compute median growth curves of Halpha, Halpha/Hbeta, O3N2 and N2 up to 2.5R_50 and 1.5 disk R_eff. The growth curves simulate the effect of observing galaxies through apertures of varying radii. The median growth curve of the Halpha/Hbeta ratio monotonically decreases from the center towards larger radii, showing for small apertures a maximum value of ~10% larger than the integrated one. The median growth curve of N2 shows a similar behavior, decreasing from the center towards larger radii. No strong dependence is seen with the inclination, morphological type and stellar mass for these growth curves. Finally, the median growth curve of O3N2 increases monotonically with radius. However, at small radii it shows systematically higher values for galaxies of earlier morphological types and for high stellar mass galaxies. Applying our aperture corrections to a sample of galaxies from the SDSS survey at 0.02<=z<=0.3 shows that the average difference between fiber-based and aperture corrected oxygen abundances, for different galaxy stellar mass and redshift ranges, reaches typically to ~11%, depending on the abundance calibration used. This average difference is found to be systematically biased, though still within the typical uncertainties of oxygen abundances derived from empirical calibrations. Caution must be exercised when using observations of galaxies for small radii (e.g. below 0.5R_eff) given the high dispersion shown around the median growth curves.
[Abridged] Investigations of neutron(n)-capture element nucleosynthesis and chemical evolution have largely been based on stellar spectroscopy. However, the recent detection of these elements in several planetary nebulae (PNe) indicates that nebular spectroscopy is a promising new tool for such studies. In PNe, n-capture element abundance determinations reveal details of s-process nucleosynthesis and convective mixing in evolved low-mass stars, as well as the chemical evolution of elements that cannot be detected in stellar spectra. Only one or two ions of a given trans-iron element can typically be detected in individual nebulae. Elemental abundance determinations thus require corrections for the abundances of unobserved ions. Such corrections rely on the availability of atomic data for processes that control the ionization equilibrium of nebulae. Until recently, these data were unknown for virtually all n-capture element ions. For the first five ions of Se, Kr, and Xe -- the three most widely detected n-capture elements in PNe -- we are calculating photoionization cross sections and radiative and dielectronic recombination rate coefficients using the multi-configuration Breit-Pauli atomic structure code AUTOSTRUCTURE. Charge transfer rate coefficients are being determined with a multichannel Landau-Zener code. To calibrate these calculations, we have measured absolute photoionization cross sections of Se and Xe ions at the Advanced Light Source synchrotron radiation facility. These atomic data can be incorporated into photoionization codes, which we will use to derive ionization corrections (hence abundances) for Se, Kr, and Xe in ionized nebulae. These results are critical for honing nebular spectroscopy into a more effective tool for investigating the production and chemical evolution of trans-iron elements in the Universe.
Here we review the efforts of a number of recent results that use old tracers to understand the build up of the Galaxy. Details that lead directly to using these old tracers to measure distances are discussed. We concentrate on the following: (1) the structure and evolution of the Galactic bulge and inner Galaxy constrained from the dynamics of individual stars residing therein; (2) the spatial structure of the old Galactic bulge through photometric observations of RR Lyrae-type stars; (3) the three--dimensional structure, stellar density, mass, chemical composition, and age of the Milky Way bulge as traced by its old stellar populations; (4) an overview of RR Lyrae stars known in the ultra-faint dwarfs and their relation to the Galactic halo; and (5) different approaches for estimating absolute and relative cluster ages.
We performed the non-local thermodynamic equilibrium (non-LTE) calculations for Ti I-II with the updated model atom that includes quantum-mechanical rate coefficients for inelastic collisions with hydrogen atoms. We have calculated for the first time the rate coefficients for bound-bound transitions in inelastic collisions of titanium atoms and ions with hydrogen atoms and for the charge-exchange processes: Ti I + H <-> Ti II + H- and Ti II + H <-> Ti III + H-. The influence of these data on non-LTE abundance determinations has been tested for the Sun and four metal-poor stars. For Ti I and Ti II, the application of the derived rate coefficients has led to an increase in the departures from LTE and an increase in the titanium abundance compared to that, obtained with approximate formulas for the rate coefficients. In metal-poor stars, we have failed to achieve consistent non-LTE abundances from lines of two ionization stages. The known in the literature discrepancy in the non-LTE abundances from Ti I and Ti II lines in metal-poor stars cannot be solved by improvement of the rates of inelastic processes in collisions with hydrogen atoms in non-LTE calculations with classical model atmospheres.
Galactic disc chemical evolution models generally ignore azimuthal surface density variation that can introduce chemical abundance azimuthal gradients. Recent observations, however, have revealed chemical abundance changes with azimuth in the gas and stellar components of both the Milky Way and external galaxies. To quantify the effects of spiral arm density fluctuations on the azimuthal variations of the oxygen and iron abundances in disc galaxies. We develop a new 2D galactic disc chemical evolution model, capable of following not just radial but also azimuthal inhomogeneities. The density fluctuations resulting from a Milky Way-like N-body disc formation simulation produce azimuthal variations in the oxygen abundance gradients of the order of 0.1 dex. Moreover, in agreement with the most recent observations in external galaxies, the azimuthal variations are more evident in the outer galactic regions. Using a simple analytical model, we show that the largest fluctuations with azimuth result near the spiral structure corotation resonance, where the relative speed between spiral and gaseous disc is the slowest. In conclusion we provided a new 2D chemical evolution model capable of following azimuthal density variations. Density fluctuations extracted from a Milky Way-like dynamical model lead to a scatter in the azimuthal variations of the oxygen abundance gradient in agreement with observations in external galaxies. We interpret the presence of azimuthal scatter at all radii by the presence of multiple spiral modes moving at different pattern speeds, as found in both observations and numerical simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا