ترغب بنشر مسار تعليمي؟ اضغط هنا

2D chemical evolution model: the impact of galactic disc asymmetries on azimuthal chemical abundance variations

324   0   0.0 ( 0 )
 نشر من قبل Emanuele Spitoni Dr
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Galactic disc chemical evolution models generally ignore azimuthal surface density variation that can introduce chemical abundance azimuthal gradients. Recent observations, however, have revealed chemical abundance changes with azimuth in the gas and stellar components of both the Milky Way and external galaxies. To quantify the effects of spiral arm density fluctuations on the azimuthal variations of the oxygen and iron abundances in disc galaxies. We develop a new 2D galactic disc chemical evolution model, capable of following not just radial but also azimuthal inhomogeneities. The density fluctuations resulting from a Milky Way-like N-body disc formation simulation produce azimuthal variations in the oxygen abundance gradients of the order of 0.1 dex. Moreover, in agreement with the most recent observations in external galaxies, the azimuthal variations are more evident in the outer galactic regions. Using a simple analytical model, we show that the largest fluctuations with azimuth result near the spiral structure corotation resonance, where the relative speed between spiral and gaseous disc is the slowest. In conclusion we provided a new 2D chemical evolution model capable of following azimuthal density variations. Density fluctuations extracted from a Milky Way-like dynamical model lead to a scatter in the azimuthal variations of the oxygen abundance gradient in agreement with observations in external galaxies. We interpret the presence of azimuthal scatter at all radii by the presence of multiple spiral modes moving at different pattern speeds, as found in both observations and numerical simulations.



قيم البحث

اقرأ أيضاً

We have obtained high-resolution, high signal-to-noise spectra for 899 F and G dwarf stars in the Solar neighbourhood. The stars were selected on the basis of their kinematic properties to trace the thin and thick discs, the Hercules stream, and the metal-rich stellar halo. A significant number of stars with kinematic properties in between the thin and thick discs were also observed in order to in greater detail investigate the dichotomy of the Galactic disc. All stars have been homogeneously analysed, using the exact same methods, atomic data, model atmospheres, etc., and also truly differentially to the Sun. Hence, the sample is likely to be free from internal errors, allowing us to, in a multi-dimensional space consisting of detailed elemental abundances, stellar ages, and the full three-dimensional space velocities, reveal very small differences between the stellar populations.
In this paper, we study the formation and chemical evolution of the Milky Way disc with particular focus on the abundance patterns ([$alpha$/Fe] vs. [Fe/H]) at different Galactocentric distances, the present-time abundance gradients along the disc an d the time evolution of abundance gradients. We consider the chemical evolution models for the Galactic disc developed by Grisoni et al. (2017) for the solar neighborhood, both the two-infall and the one-infall ones, and we extend our analysis to the other Galactocentric distances. In particular, we examine the processes which mainly influence the formation of the abundance gradients: the inside-out scenario, a variable star formation efficiency, and radial gas flows. We compare our model results with recent abundance patterns obtained along the Galactic disc from the APOGEE survey and with abundance gradients observed from Cepheids, open clusters, HII regions and PNe. We conclude that the inside-out scenario is a key ingredient, but cannot be the only one to explain abundance patterns at different Galactocentric distances and abundance gradients. Further ingredients, such as radial gas flows and variable star formation efficiency, are needed to reproduce the observed features in the thin disc. The evolution of abundance gradients with time is also shown, although firm conclusions cannot still be drawn.
Modeling the evolution of the elements in the Milky Way is a multidisciplinary and challenging task. In addition to simulating the 13 billion years evolution of our Galaxy, chemical evolution simulations must keep track of the elements synthesized an d ejected from every astrophysical site of interest (e.g., supernova, compact binary merger). The elemental abundances of such ejecta, which are a fundamental input for chemical evolution codes, are usually taken from theoretical nucleosynthesis calculations performed by the nuclear astrophysics community. Therefore, almost all chemical evolution predictions rely on the nuclear physics behind those calculations. In this proceedings, we highlight the impact of nuclear physics uncertainties on galactic chemical evolution predictions. We demonstrate that nuclear physics and galactic evolution uncertainties both have a significant impact on interpreting the origin of neutron-capture elements in our Solar System. Those results serve as a motivation to create and maintain collaborations between the fields of nuclear astrophysics and galaxy evolution.
133 - T. Bensby 2010
The elemental abundance structure of the Galactic disc has been extensively studied in the solar neighbourhood using long-lived stars such as F and G dwarfs or K and M giants. These are stars whose atmospheres preserve the chemical composition of the ir natal gas clouds, and are hence excellent tracers of the chemical evolution of the Galaxy. As far as we are aware, there are no such studies of the inner Galactic disc, which hampers our ability to constrain and trace the origin and evolution of the Milky Way. Therefore, we aim in this study to establish the elemental abundance trend(s) of the disc(s) in the inner regions of the Galaxy. Based on equivalent width measurements in high-resolution spectra obtained with the MIKE spectrograph on the Magellan II telescope on Las Campanas in Chile, we determine elemental abundances for 44 K-type red giant stars in the inner Galactic disc, located at Galactocentric distances of 4-7,kpc. The analysis method is identical to the one recently used on red giant stars in the Galactic bulge and in the nearby thin and thick discs, enabling us to perform a truly differential comparison of the different stellar populations. We present the first detailed elemental abundance study of a significant number of red giant stars in the inner Galactic disc. We find that these inner disc stars show the same type of chemical and kinematical dichotomy as the thin and thick discs show in the solar neighbourhood. The abundance trends of the inner disc agree very well with those of the nearby thick disc, and also to those of the Bulge. The chemical similarities between the Bulge and the Galactic thick disc stellar populations indicate that they have similar chemical histories, and any model trying to understand the formation and evolution of either of the two should preferably incorporate both of them.
We extend our previous work on the age-chemical abundance structure of the Galactic outer disc to the inner disc (4 < r < 8 kpc) based on the SDSS/APOGEE survey. Different from the outer disc, the inner disc stars exhibit a clear bimodal distribution in the [Mg/Fe]-[Fe/H] plane. While a number of scenarios have been proposed in the literature, it remains challenging to recover this bimodal distribution with theoretical models. To this end, we present a chemical evolution model embedding a complex multi-phase inner disc formation scenario that matches the observed bimodal [Mg/Fe]-[Fe/H] distribution. In this scenario, the formation of the inner disc is dominated by two main starburst episodes 6 Gyr apart with secular, low-level star formation activity in between. In our model, the first starburst occurs at early cosmic times (t~1 Gyr) and the second one 6 Gyr later at a cosmic time of t~7 Gyr. Both these starburst episodes are associated with gas accretion events in our model, and are quenched rapidly. The first starburst leads to the formation of the high-$alpha$ sequence, and the second starburst leads to the formation of the metal-poor low-$alpha$ sequence. The metal-rich low-$alpha$ stars, instead, form during the secular evolution phase between the two bursts. Our model shows that the $alpha$-dichotomy originates from the rapid suppression of star formation after the first starburst. The two starburst episodes are likely to be responsible for the formation of the geometric thick disc (z >1 kpc), with the old inner thick disc and the young outer thick disc forming during the first and the second starbursts, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا