ترغب بنشر مسار تعليمي؟ اضغط هنا

In-plane Propagation of Light in Transition Metal Dichalcogenide Monolayers: Optical Selection Rules

134   0   0.0 ( 0 )
 نشر من قبل Fabian Cadiz
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The optical selection rules for inter-band transitions in WSe2, WS2 and MoSe2 transition metal dichalcogenide monolayers are investigated by polarization-resolved photoluminescence experiments with a signal collection from the sample edge. These measurements reveal a strong polarization-dependence of the emission lines. We see clear signatures of the emitted light with the electric field oriented perpendicular to the monolayer plane, corresponding to an inter-band optical transition forbidden at normal incidence used in standard optical spectroscopy measurements. The experimental results are in agreement with the optical selection rules deduced from group theory analysis, highlighting the key role played by the different symmetries of the conduction and valence bands split by the spin-orbit interaction. These studies yield a direct determination on the bright-dark exciton splitting, for which we measure 40 $pm 1$ meV and 55 $pm 2$ meV for WSe2 and WS2 monolayer, respectively.

قيم البحث

اقرأ أيضاً

82 - C. Robert , D. Lagarde , F. Cadiz 2016
We have investigated the exciton dynamics in transition metal dichalcogenide mono-layers using time-resolved photoluminescence experiments performed with optimized time-resolution. For MoSe2 monolayers, we measure $tau_{rad}=1.8pm0.2$ ps that we inte rpret as the intrinsic radiative recombination time. Similar values are found for WSe2 mono-layers. Our detailed analysis suggests the following scenario: at low temperature (T $leq$ 50 K), the exciton oscillator strength is so large that the entire light can be emitted before the time required for the establishment of a thermalized exciton distribution. For higher lattice temperatures, the photoluminescence dynamics is characterized by two regimes with very different characteristic times. First the PL intensity drops drastically with a decay time in the range of the picosecond driven by the escape of excitons from the radiative window due to exciton- phonon interactions. Following this first non-thermal regime, a thermalized exciton population is established gradually yielding longer photoluminescence decay times in the nanosecond range. Both the exciton effective radiative recombination and non-radiative recombination channels including exciton-exciton annihilation control the latter. Finally the temperature dependence of the measured exciton and trion dynamics indicates that the two populations are not in thermodynamical equilibrium.
Transition metal dichalcogenide (TMDC) monolayers are newly discovered semiconductors for a wide range of applications in electronics and optoelectronics. Most studies have focused on binary monolayers that share common properties: direct optical ban dgap, spin-orbit (SO) splittings of hundreds of meV, light-matter interaction dominated by robust excitons and coupled spin-valley states of electrons. Studies on alloy-based monolayers are more recent, yet they may not only extend the possibilities for TMDC applications through specific engineering but also help understanding the differences between each binary material. Here, we synthesized highly crystalline Mo$_{(1-x)}$W$_{x}$Se$_2$ to show engineering of the direct optical bandgap and the SO coupling in ternary alloy monolayers. We investigate the impact of the tuning of the SO spin splitting on the optical and polarization properties. We show a non-linear increase of the optically generated valley polarization as a function of tungsten concentration, where 40% tungsten incorporation is sufficient to achieve valley polarization as high as in binary WSe2. We also probe the impact of the tuning of the conduction band SO spin splitting on the bright versus dark state population i.e. PL emission intensity. We show that the MoSe2 PL intensity decreases as a function of temperature by an order of magnitude, whereas for WSe2 we measure surprisingly an order of magnitude increase over the same temperature range (T=4-300K). The ternary material shows a trend between these two extreme behaviors. These results show the strong potential of SO engineering in ternary TMDC alloys for optoelectronics and applications based on electron spin- and valley-control.
The intricate interplay between optically dark and bright excitons governs the light-matter interaction in transition metal dichalcogenide monolayers. We have performed a detailed investigation of the spin-forbidden dark excitons in WSe2 monolayers b y optical spectroscopy in an out-of-plane magnetic field Bz. In agreement with the theoretical predictions deduced from group theory analysis, magneto-photoluminescence experiments reveal a zero field splitting $delta=0.6 pm 0.1$ meV between two dark exciton states. The low energy state being strictly dipole forbidden (perfectly dark) at Bz=0 while the upper state is partially coupled to light with z polarization (grey exciton). The first determination of the dark neutral exciton lifetime $tau_D$ in a transition metal dichalcogenide monolayer is obtained by time-resolved photoluminescence. We measure $tau_D sim 110 pm 10$ ps for the grey exciton state, i.e. two orders of magnitude longer than the radiative lifetime of the bright neutral exciton at T=12 K.
Charged excitons (trions) are essential for the optical spectra in low dimensional doped monolayers (ML) of transitional metal dichalcogenides (TMDC). Using a direct diagonalization of the three-body Hamiltonian, we explore the low-lying trion states in four types of TMDC MLs. We show that the trions fine structure results from the interplay between the spin-valley fine structure of the single-particle bands and the exchange interaction between the composing particles. We demonstrate that by variations of the doping and dielectric environment, trion energy fine structure can be tuned, leading to anti-crossing of the bright and dark states with substantial implications for the optical spectra of TMDC MLs.
Atomic scale defects in semiconductors enable their technological applications and realization of novel quantum states. Using scanning tunneling microscopy and spectroscopy complemented by ab-initio calculations we determine the nature of defects in the anisotropic van der Waals layered semiconductor ReS$_2$. We demonstrate the in-plane anisotropy of the lattice by directly visualizing chains of rhenium atoms forming diamond-shaped clusters. Using scanning tunneling spectroscopy we measure the semiconducting gap in the density of states. We reveal the presence of lattice defects and by comparison of their topographic and spectroscopic signatures with ab initio calculations we determine their origin as oxygen atoms absorbed at lattice point defect sites. These results provide an atomic-scale view into the semiconducting transition metal dichalcogenides, paving the way toward understanding and engineering their properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا