ﻻ يوجد ملخص باللغة العربية
Transition metal dichalcogenide (TMDC) monolayers are newly discovered semiconductors for a wide range of applications in electronics and optoelectronics. Most studies have focused on binary monolayers that share common properties: direct optical bandgap, spin-orbit (SO) splittings of hundreds of meV, light-matter interaction dominated by robust excitons and coupled spin-valley states of electrons. Studies on alloy-based monolayers are more recent, yet they may not only extend the possibilities for TMDC applications through specific engineering but also help understanding the differences between each binary material. Here, we synthesized highly crystalline Mo$_{(1-x)}$W$_{x}$Se$_2$ to show engineering of the direct optical bandgap and the SO coupling in ternary alloy monolayers. We investigate the impact of the tuning of the SO spin splitting on the optical and polarization properties. We show a non-linear increase of the optically generated valley polarization as a function of tungsten concentration, where 40% tungsten incorporation is sufficient to achieve valley polarization as high as in binary WSe2. We also probe the impact of the tuning of the conduction band SO spin splitting on the bright versus dark state population i.e. PL emission intensity. We show that the MoSe2 PL intensity decreases as a function of temperature by an order of magnitude, whereas for WSe2 we measure surprisingly an order of magnitude increase over the same temperature range (T=4-300K). The ternary material shows a trend between these two extreme behaviors. These results show the strong potential of SO engineering in ternary TMDC alloys for optoelectronics and applications based on electron spin- and valley-control.
We have investigated the exciton dynamics in transition metal dichalcogenide mono-layers using time-resolved photoluminescence experiments performed with optimized time-resolution. For MoSe2 monolayers, we measure $tau_{rad}=1.8pm0.2$ ps that we inte
Van der Waals heterobilayers based on 2D transition metal dichalcogenides have been recently shown to support robust and long-lived valley polarization for potential valleytronic applications. However, the role of the band structure and alignment of
The intricate interplay between optically dark and bright excitons governs the light-matter interaction in transition metal dichalcogenide monolayers. We have performed a detailed investigation of the spin-forbidden dark excitons in WSe2 monolayers b
Charged excitons (trions) are essential for the optical spectra in low dimensional doped monolayers (ML) of transitional metal dichalcogenides (TMDC). Using a direct diagonalization of the three-body Hamiltonian, we explore the low-lying trion states
The optical selection rules for inter-band transitions in WSe2, WS2 and MoSe2 transition metal dichalcogenide monolayers are investigated by polarization-resolved photoluminescence experiments with a signal collection from the sample edge. These meas