ﻻ يوجد ملخص باللغة العربية
We present experimental and numerical results for the long-range fluctuation properties in the spectra of quantum graphs with chaotic classical dynamics and preserved time-reversal invariance. Such systems are generally believed to provide an ideal basis for the experimental study of prob- lems originating from the field of quantum chaos and random matrix theory. Our objective is to demonstrate that this is true only for short-range fluctuation properties in the spectra, whereas the observation of deviations in the long-range fluctuations is typical for quantum graphs. This may be attributed to the unavoidable occurrence of short periodic orbits, which explore only the individual bonds forming a graph and thus do not sense the chaoticity of its dynamics. In order to corrobo- rate our supposition, we performed numerous experimental and corresponding numerical studies of long-range fluctuations in terms of the number variance and the power spectrum. Furthermore, we evaluated length spectra and compared them to semiclassical ones obtained from the exact trace formula for quantum graphs.
The influence of absorption on the spectra of microwave graphs has been studied experimentally. The microwave networks were made up of coaxial cables and T junctions. First, absorption was introduced by attaching a 50 Ohm load to an additional vertex
We present experimental studies of the power spectrum and other fluctuation properties in the spectra of microwave networks simulating chaotic quantum graphs with violated time reversal in- variance. On the basis of our data sets we demonstrate that
The spectral fluctuations of quantum (or wave) systems with a chaotic classical (or ray) limit are mostly universal and faithful to random-matrix theory. Taking up ideas of Pechukas and Yukawa we show that equilibrium statistical mechanics for the fi
We introduce a new model for investigating spectral properties of quantum graphs, a quantum circulant graph. Circulant graphs are the Cayley graphs of cyclic groups. Quantum circulant graphs with standard vertex conditions maintain important features
Chaotic systems exhibit rich quantum dynamical behaviors ranging from dynamical localization to normal diffusion to ballistic motion. Dynamical localization and normal diffusion simulate electron motion in an impure crystal with a vanishing and finit