ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing extra Yukawa couplings by precision measurements of Higgs properties

83   0   0.0 ( 0 )
 نشر من قبل Mariko Kikuchi
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

If one removes any emph{ad hoc} symmetry assumptions, the general two Higgs doublet model should have additional Yukawa interactions independent from fermion mass generation, in general involving flavor changing neutral Higgs couplings. These extra couplings can affect the discovered Higgs boson $h$ through fermion loop contributions. We calculate the renormalized $hZZ$ coupling at one-loop level %by on-shell and minimal subtraction scheme, and evaluate the dependence on heavy Higgs boson mass and extra Yukawa coupling $rho_{tt}$. Precision measurements at future colliders can explore the parameter space, and can give stronger bound on $rho_{tt}$ than the current bound from flavor experiments. As a side result, we find that if $rho_{tt}cosgamma < 0$, where $cosgamma$ is the exotic Higgs component of $h$, the $rho_{tt}$-induced top loop contribution cancels against bosonic loop contributions, and one may have alignment without decoupling, namely $sin(-gamma) simeq 1$, but exotic scalar bosons could have masses at several hundred GeV.

قيم البحث

اقرأ أيضاً

With discovery of the 125 GeV boson $h^0$, the existence of a second doublet is very plausible. We show that the alignment phenomenon, that $h^0$ is found to resemble closely the Standard Model Higgs boson, may correspond to Higgs quartic couplings $ eta_i$ that are ${cal O}(1)$ in strength. If the exotic bosons of the second doublet possess extra top Yukawa couplings, which are the least constrained by data, such a two Higgs doublet model could drive electroweak baryogenesis, as well as further protect the apparent alignment. The exotic Higgs bosons can be sub-TeV in mass while remaining well hidden so far, with broad parameter space for search at the Large Hadron Collider.
292 - Wei-Shu Hou , Girish Kumar 2020
The new round of experiments, MEG II, COMET/Mu2e, and Mu3e, would soon start to push the $mu to egamma$, $mu N to eN$ conversion, and $mu to 3e$ frontier, while Belle II would probe $tau to mugamma$ and $tau to 3mu$. In the general two Higgs doublet model with extra Yukawa couplings, we show that all these processes probe the lepton flavor violating (LFV) dipole transition that arises from the two loop mechanism, with scalar-induced contact terms subdominant. This is because existing data suggest the extra Yukawa couplings $rho_{mu e},, rho_{ee} lesssim lambda_e$, while $rho_{taumu},, rho_{tautau} lesssim lambda_tau$ and $rho_{tt} lesssim lambda_t$, with $lambda_i$ the usual Yukawa coupling of the Standard Model (SM), where $rho_{mu e}rho_{tt}$ and $rho_{taumu}rho_{tt}$ enter the $mu egamma$ and $taumugamma$ two loop amplitudes, respectively. With the $B_s to mumu$ decay rate basically consistent with SM expectation, together with the $B_s$ mixing constraint, we show that $B_s to tautau$ would also be consistent with SM, while $B_s to taumu$ and $B to Ktaumu$ decays would be out of reach of projected sensitivities, in strong contrast with some models motivated by the B anomalies.
The measured properties of the recently discovered Higgs boson are in good agreement with predictions from the Standard Model. However, small deviations in the Higgs couplings may manifest themselves once the currently large uncertainties will be imp roved as part of the LHC program and at a future Higgs factory. We review typical new physics scenarios that lead to observable modifications of the Higgs interactions. They can be divided into two broad categories: mixing effects as in portal models or extended Higgs sectors, and vertex loop effects from new matter or gauge fields. In each model we relate coupling deviations to their effective new physics scale. It turns out that with percent level precision the Higgs couplings will be sensitive to the multi-TeV regime.
We show that both flavor-conserving and flavor-violating Yukawa couplings of the Higgs boson to first- and second-generation quarks can be probed by measuring rare decays of the form h->MV, where M denotes a vector meson and V indicates either gamma, W or Z. We calculate the branching ratios for these processes in both the Standard Model and its possible extensions. We discuss the experimental prospects for their observation. The possibility of accessing these Higgs couplings appears to be unique to the high-luminosity LHC and future hadron colliders, providing further motivation for those machines.
Very recently, the CMS collaboration has reported a search for the production for a Standard Model (SM) Higgs boson in association with a top quark pair ($t bar{t} H$) at the LHC Run-2 and a best fit $t bar{t} H$ yield of $1.5 pm 0.5$ times the SM pr ediction with an observed significance of $3.3 sigma$. We study a possibility of whether or not this observed deviation can be explained by anomalous Higgs Yukawa couplings with the top and the bottom quarks, along with the LHC Run-1 data for the Higgs boson properties. We find that anomalous top and bottom Yukawa couplings with about $0-20$% and $10-40$% reductions from their SM values, respectively, can simultaneously fit the recent CMS result and the LHC Run-1 data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا