ترغب بنشر مسار تعليمي؟ اضغط هنا

An Exclusive Window onto Higgs Yukawa Couplings

165   0   0.0 ( 0 )
 نشر من قبل Jure Zupan
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that both flavor-conserving and flavor-violating Yukawa couplings of the Higgs boson to first- and second-generation quarks can be probed by measuring rare decays of the form h->MV, where M denotes a vector meson and V indicates either gamma, W or Z. We calculate the branching ratios for these processes in both the Standard Model and its possible extensions. We discuss the experimental prospects for their observation. The possibility of accessing these Higgs couplings appears to be unique to the high-luminosity LHC and future hadron colliders, providing further motivation for those machines.



قيم البحث

اقرأ أيضاً

We suggest that the exclusive Higgs + light (or b)-jet production at the LHC, $pp to h+j(j_b)$, is a rather sensitive probe of the light-quarks Yukawa couplings and of other forms of new physics (NP) in the Higgs-gluon $hgg$ and quark-gluon $qqg$ int eractions. We study the Higgs $p_T$-distribution in $pp to h+j(j_b) to gamma gamma + j(j_b)$, i.e., in $h+j(j_b)$ production followed by the Higgs decay $h to gamma gamma$, employing the ($p_T$-dependent) signal strength formalism to probe various types of NP which are relevant to these processes and which we parameterize either as scaled Standard Model (SM) couplings (the kappa-framework) and/or through new higher dimensional effective operators (the SMEFT framework). We find that the exclusive $h+j(j_b)$ production at the 13 TeV LHC is sensitive to various NP scenarios, with typical scales ranging from a few TeV to ${cal O}(10)$ TeV, depending on the flavor, chirality and Lorentz structure of the underlying physics.
We present a detailed analysis of the rare exclusive Higgs-boson decays into a single vector meson and a photon and investigate the possibility of using these processes to probe the light-quark Yukawa couplings. We work with an effective Lagrangian w ith modified Higgs couplings to account for possible new-physics effects in a model-independent way. The h->Vgamma{} decay rate is governed by the destructive interference of two amplitudes, one of which involves the Higgs coupling to the quark anti-quark pair inside the vector meson. We derive this amplitude at next-to-leading order in alpha_s using QCD factorization, including the resummation of large logarithmic corrections and accounting for the effects of flavor mixing. The high factorization scale mu~m_h ensures that our results are rather insensitive to the hadronic parameters characterizing the light-cone distribution amplitude of the vector meson. The second amplitude arises from the loop-induced effective hgammagamma* and hgamma Z* couplings, where the off-shell gauge boson converts into the vector meson. We devise a strategy to eliminate theoretical uncertainties related to this amplitude to almost arbitrary precision. This opens up the possibility to probe for O(1) modifications of the c- and b-quark Yukawa couplings and O(30) modifications of the s-quark Yukawa coupling in the high-luminosity LHC run. In particular, we show that measurements of the ratios Br(h->Upsilon(nS)gamma)/Br(h->gammagamma) and Br(h->bb)/Br(h->gammagamma) can provide complementary information on the real and imaginary parts of the b-quark Yukawa coupling. More accurate measurements would be possible at a future 100 TeV proton-proton collider.
Very recently, the CMS collaboration has reported a search for the production for a Standard Model (SM) Higgs boson in association with a top quark pair ($t bar{t} H$) at the LHC Run-2 and a best fit $t bar{t} H$ yield of $1.5 pm 0.5$ times the SM pr ediction with an observed significance of $3.3 sigma$. We study a possibility of whether or not this observed deviation can be explained by anomalous Higgs Yukawa couplings with the top and the bottom quarks, along with the LHC Run-1 data for the Higgs boson properties. We find that anomalous top and bottom Yukawa couplings with about $0-20$% and $10-40$% reductions from their SM values, respectively, can simultaneously fit the recent CMS result and the LHC Run-1 data.
We propose that natural TeV-scale new physics (NP) with ${cal O}(1)$ couplings to the standard model (SM) quarks may lead to a universal enhancement of the Yukawa couplings of all the light quarks, perhaps to a size comparable to that of the SM b-qua rk Yukawa coupling, i.e., $y_q sim {cal O}(y_b^{SM})$ for $q=u,d,c,s$. This scenario is described within an effective field theory (EFT) extension of the SM, for which a potential contribution of certain dimension six effective operators to the light quarks Yukawa couplings is $y_q sim {cal O} left( f frac{v^2}{Lambda^2} right)$, where $v$ is the Higgs vacuum expectation value (VEV), $v=246$ GeV, $Lambda$ is the typical scale of the underlying heavy NP and $f$ is the corresponding Wilson coefficient which depends on its properties and details. In particular, we study the case of $y_q sim 0.025 sim y_b^{SM}$, which is the typical size of the enhanced light-quark Yukawa couplings if the NP scale is around $Lambda sim 1.5$ TeV and the NP couplings are natural, i.e., $f sim {cal O}(1)$. We also explore this enhanced light quarks Yukawa paradigm in extensions of the SM which contain TeV-scale vector-like quarks and we match them to the specific higher dimensional effective operators in the EFT description. We discuss the constraints on this scenario and the flavor structure of the underlying NP dynamics and suggest some resulting smoking gun signals that should be searched for at the LHC, such as multi-Higgs production $pp to hh,hhh$ and single Higgs production in association with a high $p_T$ jet ($j$) or photon $pp to hj,h gamma$ and with a single top-quark $pp to h t$.
178 - Christopher T. Hill 2019
We consider multi-Higgs-doublet models which, for symmetry reasons, have a universal Higgs-Yukawa (HY) coupling, $g$. This is identified with the top quark $g=g_tapprox 1$. The models are concordant with the quasi-infrared fixed point, and the top qu ark mass is correctly predicted with a compositeness scale (Landau pole) at $M_{planck}$, with sensitivity to heavier Higgs states. The observed Higgs boson is a $bar{t}t$ composite, and a first sequential Higgs doublet, $H_b$, with $gapprox g_tapprox 1$ coupled to $bar{b}_R(t,b)_L$ is predicted at a mass $3.0 lesssim M_b lesssim 5.5$ TeV and accessible to LHC and its upgrades. This would explain the mass of the $b-$quark, and the tachyonic SM Higgs boson mass$^2$. The flavor texture problem is no longer associated with the HY couplings, but rather is determined by the inverted multi-Higgs boson mass spectrum, e.g., the lightest fermions are associated with heaviest Higgs bosons and vice versa. The theory is no less technically natural than the standard model. The discovery of $H_b$ at the LHC would confirm the general compositeness idea of Higgs bosons and anticipate additional states potentially accessible to the $100$ TeV $pp$ machine.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا