ترغب بنشر مسار تعليمي؟ اضغط هنا

Closed-form formulae of hyperbolic metamaterial made by stacked hole-array layers working at terahertz or microwave radiation

35   0   0.0 ( 0 )
 نشر من قبل Piyawath Tapsanit
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A metamaterial made by stacked hole-array layers known as a fishnet metamaterial behaves as a hyperbolic metamaterial at wavelength much longer than hole-array period. However, the analytical formulae of effective parameters of a fishnet metamaterial have not been reported hindering the design of deep-subwavelength imaging devices using this structure. We report the new closed-form formulae of effective parameters comprising anisotropic dispersion relation of a fishnet metamaterial working at terahertz or microwave frequency. These effective parameters of a fishnet metamaterial are consistent with those obtained by quasi-full solutions using known effective parameters of a hole-array layer working at frequency below its spoof plasma frequency with the superlattice period much smaller than the hole-array period. We also theoretically demonstrate the deep-subwavelength focusing at {lambda}/83 using the composite structure of a slit-array layer and a fishnet metamaterial. It is found that the focused intensity inside a fishnet metamaterial is several times larger than that without the fishnet metamaterial, but the transmitted intensity is still restricted by large-wavevector difference in air and a fishnet metamaterial. Our effective parameters may aid the next-generation deep-subwavelength imaging devices working at terahertz or microwave radiation.

قيم البحث

اقرأ أيضاً

We experimentally demonstrate intensity and phase modulation of terahertz radiation using actively controlled large-area planar metamaterial (metafilm) hybridized with a 12 um thick layer of a liquid crystal. Active control was introduced through in- plane electrical switching of the liquid crystal, which enabled us to achieve a reversible single-pass absolute transmission change of 20 % and a phase change of 40 deg at only 20 V.
We demonstrate a high temperature performance quantum detector of Terahertz (THz) radiation based on three-dimensional metamaterial. The metamaterial unit cell consists of an inductor-capacitor (LC) resonator laterally coupled with antenna elements. The absorbing region, consisting of semiconductor quantum wells is contained in the strongly ultra-subwavelength capacitors of the LC structure. The high radiation loss of the antenna allows strongly increased collection efficiency for the incident THz radiation, while the small effective volume of the LC resonator allows intense light-matter coupling with reduced electrical area. As a result, our detectors operates at much higher temperatures than conventional quantum well detectors demonstrated so far.
A microwave ultra-broadband polarization-independent metamaterial absorber is demonstrated. It is composed of a periodic array of metal-dielectric multilayered quadrangular frustum pyramids. These pyramids possess resonant absorption modes at multi-f requencies, of which the overlapping leads to the total absorption of the incident wave over an ultra-wide spectral band. The experimental absorption at normal incidence is above 90% in the frequency range of 7.8-14.7GHz, and the absorption is kept large when the incident angle is smaller than 60 degrees. The experimental results agree well with the numerical simulation.
The optical properties of some nanomaterials can be controlled by an external magnetic field, providing active functionalities for a wide range of applications, from single-molecule sensing to nanoscale nonreciprocal optical isolation. Materials with broadband tunable magneto-optical response are therefore highly desired for various components in next-generation integrated photonic nanodevices. Concurrently, hyperbolic metamaterials received a lot of attention in the past decade since they exhibit unusual properties that are rarely observed in nature and provide an ideal platform to control the optical response at the nanoscale via careful design of the effective permittivity tensor, surpassing the possibilities of conventional systems. Here, we experimentally study magnetic circular dichroism in a metasurface made of type-II hyperbolic nanoparticles on a transparent substrate. Numerical simulations confirm the experimental findings, and an analytical model is established to explain the physical origin of the observed magneto-optical effects, which can be described in terms of the coupling of fundamental electric and magnetic dipole modes with an external magnetic field. Our system paves the way for the development of nanophotonic active devices combining the benefits of sub-wavelength light manipulation in hyperbolic metamaterials supporting a large density of optical states with the ability to freely tune the magneto-optical response via control over the anisotropic permittivity of the system.
236 - M. A. Noginov , H. Li , D. Dryden 2009
In the metamaterial with hyperbolic dispersion (an array of silver nanowires in alumina membrane) we have observed six-fold reduction of the emission life-time of dye deposited onto the metamaterials surface. This serves as the evidence of the earlie r predicted high density of photonic states in hyperbolic metamaterials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا