ترغب بنشر مسار تعليمي؟ اضغط هنا

The Cartan Algorithm in Five Dimensions

203   0   0.0 ( 0 )
 نشر من قبل David McNutt
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we introduce an algorithm to determine the equivalence of five dimensional spacetimes, which generalizes the Karlhede algorithm for four dimensional general relativity. As an alternative to the Petrov type classification, we employ the alignment classification to algebraically classify the Weyl tensor. To illustrate the algorithm we discuss three examples: the singly rotating Myers-Perry solution, the Kerr (anti) de Sitter solution, and the rotating black ring solution. We briefly discuss some applications of the Cartan algorithm in five dimensions.



قيم البحث

اقرأ أيضاً

In higher dimensions than four, conventional uniqueness theorem in asymptotically flat space-times does not hold, i.e., black objects can not be classified only by the mass, angular momentum and charge. In this paper, we define multipole moments for black objects and show that Myers-Perry black hole and black ring can be distinguished by quadrupole moments. This consideration gives us a new insight for the uniqueness theorem for black objects in higher dimensions.
62 - Y. Brihaye , T. Delsate 2016
Different types of gravitating compact objects occuring in d=5 space-time are considered: boson stars, hairy black holes and perfect fluid solutions. All these solutions of the Einstein equations coupled to matter have well established counterparts i n d=4; in particular neutron stars can be modell{S}ed more or less realistically by a perfect fluid. A special emphasis is set on the possibility -and/or the necessity- for these solutions to have an intrinsic angular momentum or spin. The influence of a cosmological constant on their pattern is also studied. Several physical properties are presented from which common features to boson and neutron stars clearly emerge. We finally point out qualitative differences of the gravitational interaction supporting these classical lumps between four and five dimensions.
Einstein-Gauss-Bonnet gravity (EGB) provides a natural higher dimensional and higher order curvature generalization of Einstein gravity. It contains a new, presumably microscopic, length scale that should affect short distance properties of the dynam ics, such as Choptuik scaling. We present the results of a numerical analysis in generalized flat slice co-ordinates of self-gravitating massless scalar spherical collapse in five and six dimensional EGB gravity near the threshold of black hole formation. Remarkably, the behaviour is universal (i.e. independent of initial data) but qualitatively different in five and six dimensions. In five dimensions there is a minimum horizon radius, suggestive of a first order transition between black hole and dispersive initial data. In six dimensions no radius gap is evident. Instead, below the GB scale there is a change in the critical exponent and echoing period.
396 - Quentin Vigneron 2020
We perform a covariant 1+3 split of the Newton-Cartan equations. The resulting 3-dimensional system of equations, called textit{the 1+3-Newton-Cartan equations}, is structurally equivalent to the 1+3-Einstein equations. In particular it features the momentum constraint, and a choice of adapted coordinates corresponds to a choice of shift vector. We show that these equations reduce to the classical Newton equations without the need for special Galilean coordinates. The solutions to the 1+3-Newton-Cartan equations are equivalent to the solutions of the classical Newton equations if space is assumed to be compact or if fall-off conditions at infinity are assumed. We then show that space expansion arises as a fundamental field in Newton-Cartan theory, and not by construction as in the classical formulation of Newtonian cosmology. We recover the Buchert-Ehlers theorem for the general expansion law in Newtonian cosmology.
54 - Paulo Luz , Sante Carloni 2019
We generalize the Tolman-Oppenheimer-Volkoff equations for space-times endowed with a Weyssenhoff like torsion field in the Einstein-Cartan theory. The new set of structure equations clearly show how the presence of torsion affects the geometry of th e space-time. We obtain new exact solutions for compact objects with non-null spin surrounded by vacuum, explore their properties and discuss how these solutions should be smoothly matched to an exterior space-time. We study how spin changes the Buchdahl limit for the maximum compactness of stars. Moreover, under rather generic conditions, we prove that in the context of a Weyssenhoff like torsion, no static, spherically symmetric compact objects supported only by the spin can exist. We also provide some algorithms to generate new solutions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا