ﻻ يوجد ملخص باللغة العربية
Different types of gravitating compact objects occuring in d=5 space-time are considered: boson stars, hairy black holes and perfect fluid solutions. All these solutions of the Einstein equations coupled to matter have well established counterparts in d=4; in particular neutron stars can be modell{S}ed more or less realistically by a perfect fluid. A special emphasis is set on the possibility -and/or the necessity- for these solutions to have an intrinsic angular momentum or spin. The influence of a cosmological constant on their pattern is also studied. Several physical properties are presented from which common features to boson and neutron stars clearly emerge. We finally point out qualitative differences of the gravitational interaction supporting these classical lumps between four and five dimensions.
The present surge for the astrophysical relevance of boson stars stems from the speculative possibility that these compact objects could provide a considerable fraction of the non-baryonic part of dark matter within the halo of galaxies. For a very l
We discuss boson stars and neutron stars, respectively, in a scalar-tensor gravity model with an explicitly time-dependent real scalar field. While the boson stars in our model -- in contrast to the neutron stars -- do not possess a hard core, we fin
We study equilibrium configurations of a homogenous ball of matter in a bootstrapped description of gravity which includes a gravitational self-interaction term beyond the Newtonian coupling. Both matter density and pressure are accounted for as sour
In a certain class of scalar-Gauss-Bonnet gravity, the black holes and the neutron stars can undergo spontaneous scalarization - a strong gravity phase transition triggered by a tachyonic instability due to the non-minimal coupling between the scalar
In August 2017, the first detection of a binary neutron star merger, GW170817, made it possible to study neutron stars in compact binary systems using gravitational waves. Despite being the loudest (in terms of signal-to-noise ratio) gravitational wa