ترغب بنشر مسار تعليمي؟ اضغط هنا

Formation of Globular Cluster Candidates in Merging Proto-galaxies at High Redshift: A View from the FIRE Cosmological Simulations

75   0   0.0 ( 0 )
 نشر من قبل Ji-Hoon Kim Dr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a state-of-the-art cosmological simulation of merging proto-galaxies at high redshift from the FIRE project, with explicit treatments of star formation and stellar feedback in the interstellar medium, we investigate the formation of star clusters and examine one of the formation hypothesis of present-day metal-poor globular clusters. We find that frequent mergers in high-redshift proto-galaxies could provide a fertile environment to produce long-lasting bound star clusters. The violent merger event disturbs the gravitational potential and pushes a large gas mass of ~> 1e5-6 Msun collectively to high density, at which point it rapidly turns into stars before stellar feedback can stop star formation. The high dynamic range of the reported simulation is critical in realizing such dense star-forming clouds with a small dynamical timescale, t_ff <~ 3 Myr, shorter than most stellar feedback timescales. Our simulation then allows us to trace how clusters could become virialized and tightly-bound to survive for up to ~420 Myr till the end of the simulation. Because the clusters tightly-bound core was formed in one short burst, and the nearby older stars originally grouped with the cluster tend to be preferentially removed, at the end of the simulation the cluster has a small age spread.

قيم البحث

اقرأ أيضاً

105 - Xiangcheng Ma 2015
We present a series of high-resolution (20-2000 Msun, 0.1-4 pc) cosmological zoom-in simulations at z~6 from the Feedback In Realistic Environment (FIRE) project. These simulations cover halo masses 10^9-10^11 Msun and rest-frame ultraviolet magnitud e Muv = -9 to -19. These simulations include explicit models of the multi-phase ISM, star formation, and stellar feedback, which produce reasonable galaxy properties at z = 0-6. We post-process the snapshots with a radiative transfer code to evaluate the escape fraction (fesc) of hydrogen ionizing photons. We find that the instantaneous fesc has large time variability (0.01%-20%), while the time-averaged fesc over long time-scales generally remains ~5%, considerably lower than the estimate in many reionization models. We find no strong dependence of fesc on galaxy mass or redshift. In our simulations, the intrinsic ionizing photon budgets are dominated by stellar populations younger than 3 Myr, which tend to be buried in dense birth clouds. The escaping photons mostly come from populations between 3-10 Myr, whose birth clouds have been largely cleared by stellar feedback. However, these populations only contribute a small fraction of intrinsic ionizing photon budgets according to standard stellar population models. We show that fesc can be boosted to high values, if stellar populations older than 3 Myr produce more ionizing photons than standard stellar population models (as motivated by, e.g., models including binaries). By contrast, runaway stars with velocities suggested by observations can enhance fesc by only a small fraction. We show that sub-grid star formation models, which do not explicitly resolve star formation in dense clouds with n >> 1 cm^-3, will dramatically over-predict fesc.
94 - Xiangcheng Ma 2019
We present a suite of 34 high-resolution cosmological zoom-in simulations consisting of thousands of halos up to M_halo~10^12 M_sun (M_star~10^10.5 M_sun) at z>=5 from the Feedback in Realistic Environments project. We post-process our simulations wi th a three-dimensional Monte Carlo dust radiative transfer code to study dust extinction, dust emission, and dust temperature within these simulated z>=5 galaxies. Our sample forms a tight correlation between infrared excess (IRX=F_IR/F_UV) and ultraviolet (UV)-continuum slope (beta_UV), despite the patchy, clumpy dust geometry shown in our simulations. We find that the IRX-beta_UV relation is mainly determined by the shape of the extinction curve and is independent of its normalization (set by the dust-to-gas ratio). The bolometric IR luminosity (L_IR) correlates with the intrinsic UV luminosity and the star formation rate (SFR) averaged over the past 10 Myr. We predict that at a given L_IR, the peak wavelength of the dust spectral energy distributions for z>=5 galaxies is smaller by a factor of 2 (due to higher dust temperatures on average) than at z=0. The higher dust temperatures are driven by higher specific SFRs and SFR surface densities with increasing redshift. We derive the galaxy UV luminosity functions (LFs) at z=5-10 from our simulations and confirm that a heavy attenuation is required to reproduce the observed bright-end UVLFs. We also predict the IRLFs and UV luminosity densities at z=5-10. We discuss the implications of our results on current and future observations probing dust attenuation and emission in z>=5 galaxies.
Contradictory results have been reported on the time evolution of the alignment between clusters and their Brightest Cluster Galaxy (BCG). We study this topic by analyzing cosmological hydro-simulations of 24 massive clusters with $M_{200}|_{z=0} gtr sim 10^{15}, M_odot$, plus 5 less massive with $1 times 10^{14} lesssim M_{200}|_{z=0} lesssim 7 times 10^{14}, M_odot$, which have already proven to produce realistic BCG masses. We compute the BCG alignment with both the distribution of cluster galaxies and the dark matter (DM) halo. At redshift $z=0$, the major axes of the simulated BCGs and their host cluster galaxy distributions are aligned on average within 20$^circ$. The BCG alignment with the DM halo is even tighter. The alignment persists up to $zlesssim2$ with no evident evolution. This result continues, although with a weaker signal, when considering the projected alignment. The cluster alignment with the surrounding distribution of matter ($3R_{200}$) is already in place at $zsim4$ with a typical angle of $35^circ$, before the BCG-Cluster alignment develops. The BCG turns out to be also aligned with the same matter distribution, albeit always to a lesser extent. These results taken together might imply that the BCG-Cluster alignment occurs in an outside-in fashion. Depending on their frequency and geometry, mergers can promote, destroy or weaken the alignments. Clusters that do not experience recent major mergers are typically more relaxed and aligned with their BCG. In turn, accretions closer to the cluster elongation axis tend to improve the alignment as opposed to accretions closer to the cluster minor axis.
85 - T. K. Chan 2015
We study the distribution of cold dark matter (CDM) in cosmological simulations from the FIRE (Feedback In Realistic Environments) project, for $M_{ast}sim10^{4-11},M_{odot}$ galaxies in $M_{rm h}sim10^{9-12},M_{odot}$ halos. FIRE incorporates explic it stellar feedback in the multi-phase ISM, with energetics from stellar population models. We find that stellar feedback, without fine-tuned parameters, greatly alleviates small-scale problems in CDM. Feedback causes bursts of star formation and outflows, altering the DM distribution. As a result, the inner slope of the DM halo profile ($alpha$) shows a strong mass dependence: profiles are shallow at $M_{rm h}sim10^{10}-10^{11},M_{odot}$ and steepen at higher/lower masses. The resulting core sizes and slopes are consistent with observations. This is broadly consistent with previous work using simpler feedback schemes, but we find steeper mass dependence of $alpha$, and relatively late growth of cores. Because the star formation efficiency $M_{ast}/M_{rm h}$ is strongly halo mass dependent, a rapid change in $alpha$ occurs around $M_{rm h}sim 10^{10},M_{odot}$ ($M_{ast}sim10^{6}-10^{7},M_{odot}$), as sufficient feedback energy becomes available to perturb the DM. Large cores are not established during the period of rapid growth of halos because of ongoing DM mass accumulation. Instead, cores require several bursts of star formation after the rapid buildup has completed. Stellar feedback dramatically reduces circular velocities in the inner kpc of massive dwarfs; this could be sufficient to explain the Too Big To Fail problem without invoking non-standard DM. Finally, feedback and baryonic contraction in Milky Way-mass halos produce DM profiles slightly shallower than the Navarro-Frenk-White profile, consistent with the normalization of the observed Tully-Fisher relation.
57 - Xi Meng , Oleg Gnedin , Hui Li 2018
We investigate the structure of galaxies formed in a suite of high-resolution cosmological simulations. Consistent with observations of high-redshift galaxies, our simulated galaxies show irregular, prolate shapes with thick stellar disks, which are dominated by turbulent motions instead of rotation. Yet molecular gas and young stars are restricted to relatively thin disks. We examine the accuracy of applying the Toomre linear stability analysis to predict the location and amount of gas available for star formation. We find that the Toomre criterion still works for these irregular galaxies, after correcting for multiple gas and stellar components: the $Q$ parameter in $rm{H_2}$ rich regions is in the range $0.5-1$, remarkably close to unity. Due to the violent stellar feedback from supernovae and strong turbulent motions, young stars and molecular gas are not always spatially associated. Neither the $Q$ map nor the $rm{H_2}$ surface density map coincide with recent star formation exactly. We argue that the Toomre criterion is a better indicator of future star formation than a single $rm{H_2}$ surface density threshold because of the smaller dynamic range of $Q$. The depletion time of molecular gas is below 1~Gyr on kpc scale, but with large scatter. Centering the aperture on density peaks of gas/young stars systematically biases the depletion time to larger/smaller values and increases the scatter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا