ترغب بنشر مسار تعليمي؟ اضغط هنا

The Impact of Baryonic Physics on the Structure of Dark Matter Halos: the View from the FIRE Cosmological Simulations

146   0   0.0 ( 0 )
 نشر من قبل Tsang Keung Chan
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. K. Chan




اسأل ChatGPT حول البحث

We study the distribution of cold dark matter (CDM) in cosmological simulations from the FIRE (Feedback In Realistic Environments) project, for $M_{ast}sim10^{4-11},M_{odot}$ galaxies in $M_{rm h}sim10^{9-12},M_{odot}$ halos. FIRE incorporates explicit stellar feedback in the multi-phase ISM, with energetics from stellar population models. We find that stellar feedback, without fine-tuned parameters, greatly alleviates small-scale problems in CDM. Feedback causes bursts of star formation and outflows, altering the DM distribution. As a result, the inner slope of the DM halo profile ($alpha$) shows a strong mass dependence: profiles are shallow at $M_{rm h}sim10^{10}-10^{11},M_{odot}$ and steepen at higher/lower masses. The resulting core sizes and slopes are consistent with observations. This is broadly consistent with previous work using simpler feedback schemes, but we find steeper mass dependence of $alpha$, and relatively late growth of cores. Because the star formation efficiency $M_{ast}/M_{rm h}$ is strongly halo mass dependent, a rapid change in $alpha$ occurs around $M_{rm h}sim 10^{10},M_{odot}$ ($M_{ast}sim10^{6}-10^{7},M_{odot}$), as sufficient feedback energy becomes available to perturb the DM. Large cores are not established during the period of rapid growth of halos because of ongoing DM mass accumulation. Instead, cores require several bursts of star formation after the rapid buildup has completed. Stellar feedback dramatically reduces circular velocities in the inner kpc of massive dwarfs; this could be sufficient to explain the Too Big To Fail problem without invoking non-standard DM. Finally, feedback and baryonic contraction in Milky Way-mass halos produce DM profiles slightly shallower than the Navarro-Frenk-White profile, consistent with the normalization of the observed Tully-Fisher relation.



قيم البحث

اقرأ أيضاً

We study the dependence of the galaxy content of dark matter halos on large-scale environment and halo formation time using semi-analytic galaxy models applied to the Millennium simulation. We analyze subsamples of halos at the extremes of these dist ributions and measure the occupation functions for the galaxies they host. We find distinct differences in these occupation functions. The main effect with environment is that central galaxies (and in one model also the satellites) in denser regions start populating lower-mass halos. A similar, but significantly stronger, trend exists with halo age, where early-forming halos are more likely to host central galaxies at lower halo mass. We discuss the origin of these trends and the connection to the stellar mass -- halo mass relation. We find that, at fixed halo mass, older halos and to some extent also halos in dense environments tend to host more massive galaxies. Additionally, we see a reverse trend for the satellite galaxies occupation where early-forming halos have fewer satellites, likely due to having more time for them to merge with the central galaxy. We describe these occupancy variations also in terms of the changes in the occupation function parameters, which can aid in constructing realistic mock galaxy catalogs. Finally, we study the corresponding galaxy auto- and cross-correlation functions of the different samples and elucidate the impact of assembly bias on galaxy clustering. Our results can inform theoretical models of assembly bias and attempts to detect it in the real universe.
We employ isolated N-body simulations to study the response of self-interacting dark matter (SIDM) halos in the presence of the baryonic potentials. Dark matter self-interactions lead to kinematic thermalization in the inner halo, resulting in a tigh t correlation between the dark matter and baryon distributions. A deep baryonic potential shortens the phase of SIDM core expansion and triggers core contraction. This effect can be further enhanced by a large self-scattering cross section. We find the final SIDM density profile is sensitive to the baryonic concentration and the strength of dark matter self-interactions. Assuming a spherical initial halo, we also study evolution of the SIDM halo shape together with the density profile. The halo shape at later epochs deviates from spherical symmetry due to the influence of the non-spherical disc potential, and its significance depends on the baryonic contribution to the total gravitational potential, relative to the dark matter one. In addition, we construct a multi-component model for the Milky Way, including an SIDM halo, a stellar disc and a bulge, and show it is consistent with observations from stellar kinematics and streams.
156 - Xiangcheng Ma 2015
We present a series of high-resolution (20-2000 Msun, 0.1-4 pc) cosmological zoom-in simulations at z~6 from the Feedback In Realistic Environment (FIRE) project. These simulations cover halo masses 10^9-10^11 Msun and rest-frame ultraviolet magnitud e Muv = -9 to -19. These simulations include explicit models of the multi-phase ISM, star formation, and stellar feedback, which produce reasonable galaxy properties at z = 0-6. We post-process the snapshots with a radiative transfer code to evaluate the escape fraction (fesc) of hydrogen ionizing photons. We find that the instantaneous fesc has large time variability (0.01%-20%), while the time-averaged fesc over long time-scales generally remains ~5%, considerably lower than the estimate in many reionization models. We find no strong dependence of fesc on galaxy mass or redshift. In our simulations, the intrinsic ionizing photon budgets are dominated by stellar populations younger than 3 Myr, which tend to be buried in dense birth clouds. The escaping photons mostly come from populations between 3-10 Myr, whose birth clouds have been largely cleared by stellar feedback. However, these populations only contribute a small fraction of intrinsic ionizing photon budgets according to standard stellar population models. We show that fesc can be boosted to high values, if stellar populations older than 3 Myr produce more ionizing photons than standard stellar population models (as motivated by, e.g., models including binaries). By contrast, runaway stars with velocities suggested by observations can enhance fesc by only a small fraction. We show that sub-grid star formation models, which do not explicitly resolve star formation in dense clouds with n >> 1 cm^-3, will dramatically over-predict fesc.
74 - Ji-hoon Kim (1 , 2 , 3 2017
Using a state-of-the-art cosmological simulation of merging proto-galaxies at high redshift from the FIRE project, with explicit treatments of star formation and stellar feedback in the interstellar medium, we investigate the formation of star cluste rs and examine one of the formation hypothesis of present-day metal-poor globular clusters. We find that frequent mergers in high-redshift proto-galaxies could provide a fertile environment to produce long-lasting bound star clusters. The violent merger event disturbs the gravitational potential and pushes a large gas mass of ~> 1e5-6 Msun collectively to high density, at which point it rapidly turns into stars before stellar feedback can stop star formation. The high dynamic range of the reported simulation is critical in realizing such dense star-forming clouds with a small dynamical timescale, t_ff <~ 3 Myr, shorter than most stellar feedback timescales. Our simulation then allows us to trace how clusters could become virialized and tightly-bound to survive for up to ~420 Myr till the end of the simulation. Because the clusters tightly-bound core was formed in one short burst, and the nearby older stars originally grouped with the cluster tend to be preferentially removed, at the end of the simulation the cluster has a small age spread.
We consider a dark matter halo (DMH) of a spherical galaxy as a Bose-Einstein condensate of the ultra-light axions interacting with the baryonic matter. In the mean-field limit, we have derived the integro-differential equation of the Hartree-Fock ty pe for the spherically symmetrical wave function of the DMH component. This equation includes two independent dimensionless parameters: (i) b{eta}- the ratio of baryon and axion total mases and (ii) {xi}- the ratio of characteristic baryon and axion spatial parameters. We extended our dissipation algorithm for studying numerically the ground state of the axion halo in the gravitational field produced by the baryonic component. We calculated the characteristic size, Xc, of DMH as a function of b{eta} and {xi} and obtained an analytical approximation for Xc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا