ترغب بنشر مسار تعليمي؟ اضغط هنا

Out-of-time-order Operators and the Butterfly Effect

97   0   0.0 ( 0 )
 نشر من قبل Dawei Ding
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Out-of-time-order (OTO) operators have recently become popular diagnostics of quantum chaos in many-body systems. The usual way they are introduced is via a quantization of classical Lyapunov growth, which measures the divergence of classical trajectories in phase space due to the butterfly effect. However, it is not obvious how exactly they capture the sensitivity of a quantum system to its initial conditions beyond the classical limit. In this paper, we analyze sensitivity to initial conditions in the quantum regime by recasting OTO operators for many-body systems using various formulations of quantum mechanics. Notably, we utilize the Wigner phase space formulation to derive an $hbar$-expansion of the OTO operator for spatial degrees of freedom, and a large spin $1/s$-expansion for spin degrees of freedom. We find in each case that the leading term is the Lyapunov growth for the classical limit of the system and argue that quantum corrections become dominant at around the scrambling time, which is also when we expect the OTO operator to saturate. We also express the OTO operator in terms of propagators and see from a different point of view how it is a quantum generalization of the divergence of classical trajectories.



قيم البحث

اقرأ أيضاً

The out-of-time-order correlator (OTOC), recently analyzed in several physical contexts, is studied for low-dimensional chaotic systems through semiclassical expansions and numerical simulations. The semiclassical expansion for the OTOC yields a lead ing-order contribution in $hbar^2$ that is exponentially increasing with time within an intermediate, temperature-dependent, time-window. The growth-rate in such a regime is governed by the Lyapunov exponent of the underlying classical system and scales with the square-root of the temperature.
In this article we study the presence of chaos in supersymmetric(SUSY) quantum mechanics. For that purpose we present a form of 4-point out of time order correlator(OTOC) for SUSY quantum mechanical systems using tensor product formalism. We calculat e the 4-point OTOC for SUSY 1D harmonic oscillator and find that the OTOC is exactly equal to that of 1D bosonic harmonic oscillator system. In similar manner using the eigenstate representation of supersymmetric systems we calculate the generalized higher order out of time order correlator. The higher order OTOC is a more sensitive measure of chaos than the usual 4-point correlator used in literature. Finally, we calculate the generalized 2N-point OTOC for SUSY 1D harmonic oscillator.
The out-of-time-order correlator (OTOC) is considered as a measure of quantum chaos. We formulate how to calculate the OTOC for quantum mechanics with a general Hamiltonian. We demonstrate explicit calculations of OTOCs for a harmonic oscillator, a p article in a one-dimensional box, a circle billiard and stadium billiards. For the first two cases, OTOCs are periodic in time because of their commensurable energy spectra. For the circle and stadium billiards, they are not recursive but saturate to constant values which are linear in temperature. Although the stadium billiard is a typical example of the classical chaos, an expected exponential growth of the OTOC is not found. We also discuss the classical limit of the OTOC. Analysis of a time evolution of a wavepacket in a box shows that the OTOC can deviate from its classical value at a time much earlier than the Ehrenfest time.
For systems of controllable qubits, we provide a method for experimentally obtaining a useful class of multitime correlators using sequential generalized measurements of arbitrary strength. Specifically, if a correlator can be expressed as an average of nested (anti)commutators of operators that square to the identity, then that correlator can be determined exactly from the average of a measurement sequence. As a relevant example, we provide quantum circuits for measuring multiqubit out-of-time-order correlators using optimized control-Z or ZX-90 two-qubit gates common in superconducting transmon implementations.
The out-of-time-order correlators (OTOCs) is used to study the quantum phase transitions (QPTs) between the normal phase and the superradiant phase in the Rabi and few-body Dicke models with large frequency ratio of theatomic level splitting to the s ingle-mode electromagnetic radiation field frequency. The focus is on the OTOC thermally averaged with infinite temperature, which is an experimentally feasible quantity. It is shown that thecritical points can be identified by long-time averaging of the OTOC via observing its local minimum behavior. More importantly, the scaling laws of the OTOC for QPTs are revealed by studying the experimentally accessible conditions with finite frequency ratio and finite number of atoms in the studied models. The critical exponents extracted from the scaling laws of OTOC indicate that the QPTs in the Rabi and Dicke models belong to the same universality class.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا