ﻻ يوجد ملخص باللغة العربية
Out-of-time-order (OTO) operators have recently become popular diagnostics of quantum chaos in many-body systems. The usual way they are introduced is via a quantization of classical Lyapunov growth, which measures the divergence of classical trajectories in phase space due to the butterfly effect. However, it is not obvious how exactly they capture the sensitivity of a quantum system to its initial conditions beyond the classical limit. In this paper, we analyze sensitivity to initial conditions in the quantum regime by recasting OTO operators for many-body systems using various formulations of quantum mechanics. Notably, we utilize the Wigner phase space formulation to derive an $hbar$-expansion of the OTO operator for spatial degrees of freedom, and a large spin $1/s$-expansion for spin degrees of freedom. We find in each case that the leading term is the Lyapunov growth for the classical limit of the system and argue that quantum corrections become dominant at around the scrambling time, which is also when we expect the OTO operator to saturate. We also express the OTO operator in terms of propagators and see from a different point of view how it is a quantum generalization of the divergence of classical trajectories.
The out-of-time-order correlator (OTOC), recently analyzed in several physical contexts, is studied for low-dimensional chaotic systems through semiclassical expansions and numerical simulations. The semiclassical expansion for the OTOC yields a lead
In this article we study the presence of chaos in supersymmetric(SUSY) quantum mechanics. For that purpose we present a form of 4-point out of time order correlator(OTOC) for SUSY quantum mechanical systems using tensor product formalism. We calculat
The out-of-time-order correlator (OTOC) is considered as a measure of quantum chaos. We formulate how to calculate the OTOC for quantum mechanics with a general Hamiltonian. We demonstrate explicit calculations of OTOCs for a harmonic oscillator, a p
For systems of controllable qubits, we provide a method for experimentally obtaining a useful class of multitime correlators using sequential generalized measurements of arbitrary strength. Specifically, if a correlator can be expressed as an average
The out-of-time-order correlators (OTOCs) is used to study the quantum phase transitions (QPTs) between the normal phase and the superradiant phase in the Rabi and few-body Dicke models with large frequency ratio of theatomic level splitting to the s