ترغب بنشر مسار تعليمي؟ اضغط هنا

Central Engine and Host Galaxy of RXJ 1301.9+2747: A Multiwavelength View of a Low-mass Black Hole Active Galactic Nuclei with Ultra-soft X-ray Emission

99   0   0.0 ( 0 )
 نشر من قبل Xinwen Shu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

RXJ 1301.9+2747 is an optically identified very low mass AGN candidate with M_BH~1x10^6M_sun, which shows extremely soft X-ray emission and unusual X-ray variability in the form of short-lived flares. We present an analysis of multiwavelength observations of RXJ 1301.9+2747 in order to study the properties of the active nucleus and its host galaxy. The UV-to-X-ray spectrum in the quiescent state can be well and self-consistently described by a thermal and a Comptonized emission from accretion disk, with blackbody dominating ~70% of the X-rays in the 0.2-2 keV. The same model can describe the X-ray spectrum in the flare state but the Comptonized component becomes dominant (~80%). The best-fit implies an Eddington ratio of ~0.14, and a black hole mass of 1.7-2.8x10^6M_sun, in agreement with the estimation from the optical data within errors. However, the best-fitting model under-predicts the optical flux for the HST point source by a factor of ~2. The excess of nuclear optical emission could be attributed to a nuclear stellar cluster which is frequently seen in low mass AGNs. The X-ray to optical spectral slope (alpha_ox) is lower than in most other active galaxies, which may be attributed to intrinsically X-ray weakness due to very little hot and optically thin coronal emission. We performed a pilot search for weak or hidden broad emission lines using optical spectropolarimetry observations, but no any polarized broad lines are detected. The host galaxy appears to be a disk galaxy with a boxy pseudobulge or nuclear bar accounting for ~15% of the total starlight, which is consistent with the general characteristics of the host of low mass AGNs.


قيم البحث

اقرأ أيضاً

106 - B. De Marco , G. Ponti , M. Cappi 2011
We carried out a systematic analysis of time lags between X-ray energy bands in a large sample (32 sources) of unabsorbed, radio quiet active galactic nuclei (AGN), observed by XMM-Newton. The analysis of X-ray lags (up to the highest/shortest freque ncies/time-scales), is performed in the Fourier-frequency domain, between energy bands where the soft excess (soft band) and the primary power law (hard band) dominate the emission. We report a total of 15 out of 32 sources displaying a high frequency soft lag in their light curves. All 15 are at a significance level exceeding 97 per cent and 11 are at a level exceeding 99 per cent. Of these soft lags, 7 have not been previously reported in the literature, thus this work significantly increases the number of known sources with a soft/negative lag. The characteristic time-scales of the soft/negative lag are relatively short (with typical frequencies and amplitudes of usim 0.07-4 times 10^{-3} Hz and tausim 10-600 s, respectively), and show a highly significant (gsim 4sigma) correlation with the black hole mass. The measured correlations indicate that soft lags are systematically shifted to lower frequencies and higher absolute amplitudes as the mass of the source increases. To first approximation, all the sources in the sample are consistent with having similar mass-scaled lag properties. These results strongly suggest the existence of a mass-scaling law for the soft/negative lag, that holds for AGN spanning a large range of masses (about 2.5 orders of magnitude), thus supporting the idea that soft lags originate in the innermost regions of AGN and are powerful tools for testing their physics and geometry.
A calibration is made for the correlation between the X-ray Variability Amplitude (XVA) and Black Hole (BH) mass. The correlation for 21 reverberation-mapped Active Galactic Nuclei (AGN) appears very tight, with an intrinsic dispersion of 0.20 dex. T he intrinsic dispersion of 0.27 dex can be obtained if BH masses are estimated from the stellar velocity dispersions. We further test the uncertainties of mass estimates from XVAs for objects which have been observed multiple times with good enough data quality. The results show that the XVAs derived from multiple observations change by a factor of 3. This means that BH mass uncertainty from a single observation is slightly worse than either reverberation-mapping or stellar velocity dispersion measurements; however BH mass estimates with X-ray data only can be more accurate if the mean XVA value from more observations is used. Applying this relation, the BH mass of RE J1034+396 is found to be $4^{+3}_{-2} times 10^6$ $M_{odot}$. The high end of the mass range follows the relationship between the 2$f_0$ frequencies of high-frequency QPO and the BH masses derived from the Galactic X-ray binaries. We also calculate the high-frequency constant $C= 2.37 M_odot$ Hz$^{-1}$ from 21 reverberation-mapped AGN. As suggested by Gierlinski et al., $M_{rm BH}=C/C_{rm M}$, where $C_{rm M}$ is the high-frequency variability derived from XVA. Given the similar shape of power-law dominated X-ray spectra in ULXs and AGN, this can be applied to BH mass estimates of ULXs. We discuss the observed QPO frequencies and BH mass estimates in the Ultra-Luminous X-ray source M82 X-1 and NGC 5408 X-1 and favor ULXs as intermediate mass BH systems (abridged).
128 - Luming Sun 2013
In this paper we present a temporal and spectral analysis of X-ray data from the XMM and Chandra observations of the ultrasoft and variable Seyfert galaxy RX J1301.9+2747. In both observations the source clearly displays two distinct states in the X- ray band, a long quiescent state and a short flare (or eruptive) state which differs in count rates by a factor of 5--7. The transition from quiescent to flare state occurs in 1--2 ks. We have observed that the quiescent state spectrum is unprecedentedly steep with a photon index Gamma~7.1, and the spectrum of the flare state is flatter with Gamma~4.4. X-rays above 2 keV were not significantly detected in either state. In the quiescent state, the spectrum appears to be dominated by a black body component of temperature about ~30--40 eV, which is comparable to the expected maximum effective temperature from the inner accretion disk. The quiescent state however, requires an additional steep power-law, presumably arising from the Comptonization by transient heated electrons. Optical spectrum from the Sloan Digital Sky Survey shows Seyfert-like narrow lines for RX J1301.9+2747, while the HST imaging reveals a central point source for the object. In order to precisely determine the hard X-ray component, future longer X-ray observations are required. This will help constrain the accretion disk model for RX J1301.9+2747, and shed new light into the characteristics of the corona and accretion flows around black holes.
Recent studies of active galactic nuclei (AGN) found a statistical inverse linear scaling between the X-ray normalized excess variance $sigma_{rm rms}^2$ (variability amplitude) and the black hole mass spanning over $M_{rm BH}=10^6- 10^9 M_{odot}$. B eing suggested to have a small scatter, this scaling relation may provide a novel method to estimate the black hole mass of AGN. However, a question arises as to whether this relation can be extended to the low-mass regime below $sim10^6 M_{odot}$. If confirmed, it would provide an efficient tool to search for AGN with low-mass black holes using X-ray variability. This paper presents a study of the X-ray excess variances for a sample of AGN with black hole masses in the range of $10^5- 10^6 M_{odot}$ observed with {it XMM-Newton} and {it ROSAT}, including data both from the archives and from newly preformed observations. It is found that the relation is no longer a simple extrapolation of the linear scaling; instead, the relation starts to flatten at $sim10^6 M_{odot}$ toward lower masses. Our result is consistent with the recent finding of citet{L15}. Such a flattening of the $M_{rm BH}-sigma_{rm rms}^2$ relation is actually expected from the shape of the power spectrum density of AGN, whose break frequency is inversely scaled with the mass of black holes.
157 - G. C. Dewangan 2008
We present a systematic X-ray study of eight AGNs with intermediate mass black holes (M_BH 8-95x10^4 Msun) based on 12 XMM-Newton observations. The sample includes the two prototype AGNs in this class - NGC4395 and POX52 and six other AGNs discovered with the SDSS. These AGNs show some of the strongest X-ray variability with the normalized excess variances being the largest and the power density break time scales being the shortest observed among radio-quiet AGNs. The excess variance -- luminosity correlation appears to depend on both the BH mass and the Eddington luminosity ratio. The break time scale -- black hole mass relations for AGN with IMBHs are consistent with that observed for massive AGNs. We find that the FWHM of the Hbeta or Halpha line is uncorrelated with the BH mass, but shows strong anticorrelation with the Eddington luminosity ratio. Four AGNs show clear evidence for soft X-ray excess emission (kT_in~150-200eV). X-ray spectra of three other AGNs are consistent with the presence of the soft excess emission. NGC4395 with lowest L/L_Edd lacks the soft excess emission. Evidently small black mass is not the primary driver of strong soft X-ray excess emission from AGNs. The X-ray spectral properties and optical-to-X-ray spectral energy distributions of these AGNs are similar to those of Seyfert 1 galaxies. The observed X-ray/UV properties of AGNs with IMBHs are consistent with these AGNs being low mass extension of more massive AGNs; those with high Eddington luminosity ratio looking more like narrow-line Seyfert 1s while those with low $L/L_{Edd}$ looking more like broad-line Seyfert 1s.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا