ترغب بنشر مسار تعليمي؟ اضغط هنا

Planet Formation in AB Aurigae: Imaging of the inner gaseous Spirals observed inside the Dust Cavity

119   0   0.0 ( 0 )
 نشر من قبل Ya-Wen Tang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ya-Wen Tang




اسأل ChatGPT حول البحث

We report the results of ALMA observations of a protoplanetary disk surrounding the Herbig Ae star AB Aurigae. We obtained high-resolution (0.1; 14 au) images in $^{12}$CO (J=2-1) emission and in dust continuum at the wavelength of 1.3 mm. The continuum emission is detected at the center and at the ring with a radius of $sim$ 120 au. The CO emission is dominated by two prominent spirals within the dust ring. These spirals are trailing and appear to be about 4 times brighter than their surrounding medium. Their kinematics is consistent with Keplerian rotation at an inclination of 23 degree. The apparent two-arm-spiral pattern is best explained by tidal disturbances created by an unseen companion located at 60--80 au, with dust confined in the pressure bumps created outside this companion orbit. An additional companion at r of 30 au, coinciding with the peak CO brightness and a large pitch angle of the spiral, would help to explain the overall emptiness of the cavity. Alternative mechanisms to excite the spirals are discussed. The origin of the large pitch angle detected here remain puzzling.

قيم البحث

اقرأ أيضاً

In this work we demonstrate that the inner spiral structure observed in AB Aurigae can be created by a binary star orbiting inside the dust cavity. We find that a companion with a mass-ratio of 0.25, semi-major axis of 40 au, eccentricity of 0.5, and inclination of 90{deg} produces gaseous spirals closely matching the ones observed in $^{12}$CO (2-1) line emission. Based on dust dynamics in circumbinary discs (Poblete, Cuello, and Cuadra 2019), we constrain the inclination of the binary with respect to the circumbinary disc to range between 60{deg} and 90{deg}. We predict that the stellar companion is located roughly 0.18 arcsec from the central star towards the east-southeast, above the plane of the disc. Should this companion be detected in the near future, our model indicates that it should be moving away from the primary star at a rate of 6 mas/yr on the plane of the sky. Since our companion is inclined, we also predict that the spiral structure will appear to change with time, and not simply co-rotate with the companion.
Recent observations of the protoplanetary disc surrounding AB Aurigae have revealed the possible presence of two giant planets in the process of forming. The young measured age of $1-4$Myr for this system allows us to place strict time constraints on the formation histories of the observed planets. Hence we may be able to make a crucial distinction between formation through core accretion (CA) or the gravitational instability (GI), as CA formation timescales are typically Myrs whilst formation through GI will occur within the first $approx10^4-10^5$yrs of disc evolution. We focus our analysis on the $4-13$M$_{rm Jup}$ planet observed at $Rapprox30$AU. We find CA formation timescales for such a massive planet typically exceed the systems age. The planets high mass and wide orbit may instead be indicative of formation through GI. We use smoothed particle hydrodynamic simulations to determine the systems critical disc mass for fragmentation, finding $M_{rm d,crit}=0.3$M$_{odot}$. Viscous evolution models of the discs mass history indicate that it was likely massive enough to exceed $M_{rm d,crit}$ in the recent past, thus it is possible that a young AB Aurigae disc may have fragmented to form multiple giant gaseous protoplanets. Calculations of the Jeans mass in an AB Aurigae-like disc find that fragments may initially form with masses $1.6-13.3$M$_{rm Jup}$, consistent with the planets which have been observed. We therefore propose that the inferred planets in the disc surrounding AB Aurigae may be evidence of planet formation through GI.
Context. Planet formation is expected to take place in the first million years of a planetary system through various processes, which remain to be tested through observations. Aims. With the recent discovery, using ALMA, of two gaseous spiral arms in side the 120 au cavity and connected to dusty spirals, the famous protoplanetary disk around AB Aurigae presents a strong incentive for investigating the mechanisms that lead to giant planet formation. A candidate protoplanet located inside a spiral arm has already been claimed in an earlier study based on the same ALMA data. Methods. We used SPHERE at the Very Large Telescope (VLT) to perform near-infrared (IR) high-contrast imaging of AB Aur in polarized and unpolarized light in order to study the morphology of the disk and search for signs of planet formation. Results. SPHERE has delivered the deepest images ever obtained for AB Aur in scattered light. Among the many structures that are yet to be understood, we identified not only the inner spiral arms, but we also resolved a feature in the form of a twist in the eastern spiral at a separation of about 30 au. The twist of the spiral is perfectly reproduced with a planet-driven density wave model when projection effects are accounted for. We measured an azimuthal displacement with respect to the counterpart of this feature in the ALMA data, which is consistent with Keplerian motion on a 4-yr baseline. Another point sxce is detected near the edge of the inner ring, which is likely the result of scattering as opposed to the direct emission from a planet photosphere. We tentatively derived mass constraints for these two features. Conclusions. The twist and its apparent orbital motion could well be the first direct evidence of a connection between a protoplanet candidate and its manifestation as a spiral imprinted in the gas and dust distributions.
We report high-resolution 1.6 $micron$ polarized intensity ($PI$) images of the circumstellar disk around the Herbig Ae star AB Aur at a radial distance of 22 AU ($0.15$) up to 554 AU (3.$$85), which have been obtained by the high-contrast instrument HiCIAO with the dual-beam polarimetry. We revealed complicated and asymmetrical structures in the inner part ($lesssim$140 AU) of the disk, while confirming the previously reported outer ($r$ $gtrsim$200 AU) spiral structure. We have imaged a double ring structure at $sim$40 and $sim$100 AU and a ring-like gap between the two. We found a significant discrepancy of inclination angles between two rings, which may indicate that the disk of AB Aur is warped. Furthermore, we found seven dips (the typical size is $sim$45 AU or less) within two rings as well as three prominent $PI$ peaks at $sim$40 AU. The observed structures, including a bumpy double ring, a ring-like gap, and a warped disk in the innermost regions, provide essential information for understanding the formation mechanism of recently detected wide-orbit ($r$ $>$20 AU) planets.
Hydrodynamical simulations of planet-disk interactions suggest that planets may be responsible for a number of the sub-structures frequently observed in disks in both scattered light and dust thermal emission. Despite the ubiquity of these features, direct evidence of planets embedded in disks and of the specific interaction features like spiral arms within planetary gaps still remain rare. In this study we discuss recent observational results in the context of hydrodynamical simulations in order to infer the properties of a putative embedded planet in the cavity of a transition disk. We imaged the transition disk SR 21 in H-band in scattered light with SPHERE/IRDIS and in thermal dust emission with ALMA band 3 (3mm) observations at a spatial resolution of 0.1. We combine these datasets with existing band 9 (430um) and band 7 (870um) ALMA continuum data. The Band 3 continuum data reveals a large cavity and a bright ring peaking at 53 au strongly suggestive of dust trapping.The ring shows a pronounced azimuthal asymmetry, with a bright region in the north-west that we interpret as a dust over-density. A similarly-asymmetric ring is revealed at the same location in polarized scattered light, in addition to a set of bright spirals inside the mm cavity and a fainter spiral bridging the gap to the outer ring. These features are consistent with a number of previous hydrodynamical models of planet-disk interactions, and suggest the presence of a ~1 MJup planet at 44 au and PA=11{deg}. This makes SR21 the first disk showing spiral arms inside the mm cavity, as well as one for which the location of a putative planet can be precisely inferred. With the location of a possible planet being well-constrained by observations, it is an ideal candidate for follow-up observations to search for direct evidence of a planetary companion still embedded in its disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا