ترغب بنشر مسار تعليمي؟ اضغط هنا

Spirals inside the millimeter cavity of transition disk SR 21

61   0   0.0 ( 0 )
 نشر من قبل Gabriela Muro-Arena
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hydrodynamical simulations of planet-disk interactions suggest that planets may be responsible for a number of the sub-structures frequently observed in disks in both scattered light and dust thermal emission. Despite the ubiquity of these features, direct evidence of planets embedded in disks and of the specific interaction features like spiral arms within planetary gaps still remain rare. In this study we discuss recent observational results in the context of hydrodynamical simulations in order to infer the properties of a putative embedded planet in the cavity of a transition disk. We imaged the transition disk SR 21 in H-band in scattered light with SPHERE/IRDIS and in thermal dust emission with ALMA band 3 (3mm) observations at a spatial resolution of 0.1. We combine these datasets with existing band 9 (430um) and band 7 (870um) ALMA continuum data. The Band 3 continuum data reveals a large cavity and a bright ring peaking at 53 au strongly suggestive of dust trapping.The ring shows a pronounced azimuthal asymmetry, with a bright region in the north-west that we interpret as a dust over-density. A similarly-asymmetric ring is revealed at the same location in polarized scattered light, in addition to a set of bright spirals inside the mm cavity and a fainter spiral bridging the gap to the outer ring. These features are consistent with a number of previous hydrodynamical models of planet-disk interactions, and suggest the presence of a ~1 MJup planet at 44 au and PA=11{deg}. This makes SR21 the first disk showing spiral arms inside the mm cavity, as well as one for which the location of a putative planet can be precisely inferred. With the location of a possible planet being well-constrained by observations, it is an ideal candidate for follow-up observations to search for direct evidence of a planetary companion still embedded in its disk.

قيم البحث

اقرأ أيضاً

High-contrast imaging of exoplanets and protoplanetary disks depends on wavefront sensing and correction made by adaptive optics instruments. Classically, wavefront sensing has been conducted at optical wavelengths, which made high-contrast imaging o f red targets such as M-type stars or extincted T Tauri stars challenging. Keck/NIRC2 has combined near-infrared (NIR) detector technology with the pyramid wavefront sensor (PWFS). With this new module we observed SR~21, a young star that is brighter at NIR wavelengths than at optical wavelengths. Compared with the archival data of SR~21 taken with the optical wavefront sensing we achieved $sim$20% better Strehl ratio in similar natural seeing conditions. Further post-processing utilizing angular differential imaging and reference-star differential imaging confirmed the spiral feature reported by the VLT/SPHERE polarimetric observation, which is the first detection of the SR~21 spiral in total intensity at $L^prime$ band. We also compared the contrast limit of our result ($10^{-4}$ at $0farcs4$ and $2times10^{-5}$ at $1farcs0$) with the archival data that were taken with optical wavefront sensing and confirmed the improvement, particularly at $leq0farcs5$. Our observation demonstrates that the NIR PWFS improves AO performance and will provide more opportunities for red targets in the future.
In recent years spiral structures have been seen in scattered light observations and signs of vortices in millimeter images of protoplanetary disks, both probably linked with the presence of planets. We present ALMA Band 7 (335 GHz or 0.89 mm) contin uum observations of the transition disk HD135344B at unprecedented spatial resolution of 0.16, using superuniform weighting. The data show that the asymmetric millimeter dust ring seen in previous work actually consists of an inner ring and an outer asymmetric structure. The outer feature is cospatial with the end of one of the spiral arms seen in scattered light, but the feature itself is not consistent with a spiral arm due to its coradiance. We propose a new possible scenario to explain the observed structures at both wavelengths. Hydrodynamical simulations show that a massive planet can generate a primary vortex (which dissipates at longer timescales, becoming an axisymmetric ring) and trigger the formation of a second generation vortex further out. Within this scenario the two spiral arms observed at scattered light originate from a planet at ~30 AU and from the secondary vortex at ~75 AU rather than a planet further out as previously reported.
We present 1.3 millimeter observations of the debris disk surrounding the HR 8799 multi-planet system from the Submillimeter Array to complement archival ALMA observations that spatially filtered away the bulk of the emission. The image morphology at $3.8$ arcsecond (150 AU) resolution indicates an optically thin circumstellar belt, which we associate with a population of dust-producing planetesimals within the debris disk. The interferometric visibilities are fit well by an axisymmetric radial power-law model characterized by a broad width, $Delta R/Rgtrsim 1$. The belt inclination and orientation parameters are consistent with the planet orbital parameters within the mutual uncertainties. The models constrain the radial location of the inner edge of the belt to $R_text{in}= 104_{-12}^{+8}$ AU. In a simple scenario where the chaotic zone of the outermost planet b truncates the planetesimal distribution, this inner edge location translates into a constraint on the planet~b mass of $M_text{pl} = 5.8_{-3.1}^{+7.9}$ M$_{rm Jup}$. This mass estimate is consistent with infrared observations of the planet luminosity and standard hot-start evolutionary models, with the uncertainties allowing for a range of initial conditions. We also present new 9 millimeter observations of the debris disk from the Very Large Array and determine a millimeter spectral index of $2.41pm0.17$. This value is typical of debris disks and indicates a power-law index of the grain size distribution $q=3.27pm0.10$, close to predictions for a classical collisional cascade.
Context. Despite the recent discovery of spiral-shaped features in protoplanetary discs in the near-infrared and millimetric wavelengths, there is still an active discussion to understand how they formed. In fact, the spiral waves observed in discs a round young stars can be due to different physical mechanisms: planet/companion torques, gravitational perturbations or illumination effects. Aims. We study the spirals formed in the gaseous phase due to two diametrically opposed shadows cast at fixed disc locations. The shadows are created by an inclined non-precessing disc inside the cavity, which is assumed to be optically thick. In particular, we analyse the effect of these spirals on the dynamics of the dust particles and discuss their detectability in transition discs. Methods. We perform gaseous hydrodynamical simulations with shadows, then we compute the dust evolution on top of the gaseous distribution, and finally we produce synthetic ALMA observations of the dust emission based on radiative transfer calculations. Results. Our main finding is that mm- to cm-sized dust particles are efficiently trapped inside the shadow-triggered spirals. We also observe that particles of various sizes starting at different stellocentric distances are well mixed inside these pressure maxima. This dynamical effect would favour grain growth and affect the resulting composition of planetesimals in the disc. In addition, our radiative transfer calculations show spiral patterns in the disc at 1.6 {mu}m and 1.3 mm. Due to their faint thermal emission (compared to the bright inner regions of the disc) the spirals cannot be detected with ALMA. Our synthetic observations prove however that shadows are observable as dips in the thermal emission.
Pairs of azimuthal intensity decrements at near symmetric locations have been seen in a number of protoplanetary disks. They are most commonly interpreted as the two shadows cast by a highly misaligned inner disk. Direct evidence of such an inner dis k, however, remain largely illusive, except in rare cases. In 2012, a pair of such shadows were discovered in scattered light observations of the near face-on disk around 2MASS J16042165-2130284, a transitional object with a cavity $sim$60 AU in radius. The star itself is a `dipper, with quasi-periodic dimming events on its light curve, commonly hypothesized as caused by extinctions by transiting dusty structures in the inner disk. Here, we report the detection of a gas disk inside the cavity using ALMA observations with $sim0$farcs2 angular resolution. A twisted butterfly pattern is found in the moment 1 map of CO (3-2) emission line towards the center, which is the key signature of a high misalignment between the inner and outer disks. In addition, the counterparts of the shadows are seen in both dust continuum emission and gas emission maps, consistent with these regions being cooler than their surroundings. Our findings strongly support the hypothesized misaligned-inner-disk origin of the shadows in the J1604-2130 disk. Finally, the inclination of inner disk would be close to -45 $^{circ}$ in contrast with 45 $^{circ}$; it is possible that its internal asymmetric structures cause the variations on the light curve of the host star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا