ﻻ يوجد ملخص باللغة العربية
Carbon spheres (CS) with diameters in the range $2 - 10 mu m$ were prepared via hydrolysis of a sucrose solution at $200^o C,$ and later annealed in $N_2$ at $800^o C.$ The spheres were highly conducting but difficult to process into thin films or pressed pellets. In our previous work, composite samples of CS and the insulating polymer polyethylene oxide (PEO) were prepared and their charge transport was analyzed in the temperature range $ 80 K < T < 300 K. $ Here, we analyze charge transport in CS coated with a thin polyaniline (PANi) film doped with hydrochloric acid (HCl), in the same temperature range. The goal is to study charge transport in the CS using a conducting polymer (PANi) as a binder and compare with that occurring at CS/PEO. A conductivity maxima was observed in the CS/PEO composite but was absent in CS/PANi. Our data analysis shows that variable range hopping of electrons between polymeric chains in PANi-filled gaps between CS takes on a predominant part in transport through CS/PANi composites, whereas in CS/PEO composites, electrons travel through gaps between CS solely by means of direct tunneling. This difference in transport mechanisms results in different temperature dependences of the conductivity.
A set of uniform carbon microspheres (CS) whose diameters have the order of $ 0.125 mu m$ to $10 mu m $ was prepared from aqueous sucrose solution by means of hydrothermal carbonization of sugar molecules. A pressed pellet was composed by mixing CSs
Low field and high field transport properties of carbon nanotubes/polymer composites are investigated for different tube fractions. Above the percolation threshold f_c=0.33%, transport is due to hopping of localized charge carriers with a localizatio
We calculate the temperature dependent conductivity of graphene in the presence of randomly distributed Coulomb impurity charges arising from the temperature dependent screening of the Coulomb disorder without any phonons. The purely electronic tempe
We demonstrate spin injection and detection in single wall carbon nanotubes using a 4-terminal, non-local geometry. This measurement geometry completely separates the charge and spin circuits. Hence all spurious magnetoresistance effects are eliminat
Using the semiclassical quantum Boltzmann equation (QBE), we numerically calculate the DC transport properties of bilayer graphene near charge neutrality. We find, in contrast to prior discussions, that phonon scattering is crucial even at temperatur