ترغب بنشر مسار تعليمي؟ اضغط هنا

Proton and Helium Spectra from the CREAM-III Flight

91   0   0.0 ( 0 )
 نشر من قبل Young Soo Yoon
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Primary cosmic-ray elemental spectra have been measured with the balloon-borne Cosmic Ray Energetics And Mass (CREAM) experiment since 2004. The third CREAM payload (CREAM-III) flew for 29 days during the 2007-2008 Antarctic season. Energies of incident particles above 1 TeV are measured with a calorimeter. Individual elements are clearly separated with a charge resolution of ~0.12 e (in charge units) and ~0.14 e for protons and helium nuclei, respectively, using two layers of silicon charge detectors. The measured proton and helium energy spectra at the top of the atmosphere are harder than other existing measurements at a few tens of GeV. The relative abundance of protons to helium nuclei is 9.53+-0.03 for the range of 1 TeV/n to 63 TeV/n. The ratio is considerably smaller than other measurements at a few tens of GeV/n. The spectra become softer above ~20 TeV. However, our statistical uncertainties are large at these energies and more data are needed.



قيم البحث

اقرأ أيضاً

Cosmic-ray proton and helium spectra have been measured with the balloon-borne Cosmic Ray Energetics And Mass experiment flown for 42 days in Antarctica in the 2004-2005 austral summer season. High-energy cosmic-ray data were collected at an average altitude of ~38.5 km with an average atmospheric overburden of ~3.9 g cm$^{-2}$. Individual elements are clearly separated with a charge resolution of ~0.15 e (in charge units) and ~0.2 e for protons and helium nuclei, respectively. The measured spectra at the top of the atmosphere are represented by power laws with a spectral index of -2.66 $pm$ 0.02 for protons from 2.5 TeV to 250 TeV and -2.58 $pm$ 0.02 for helium nuclei from 630 GeV/nucleon to 63 TeV/nucleon. They are harder than previous measurements at a few tens of GeV/nucleon. The helium flux is higher than that expected from the extrapolation of the power law fitted to the lower-energy data. The relative abundance of protons to helium nuclei is 9.1 $pm$ 0.5 for the range from 2.5 TeV/nucleon to 63 TeV/nucleon. This ratio is considerably smaller than the previous measurements at a few tens of GeV/nucleon.
The Cosmic Ray Energetics And Mass (CREAM) is a balloon-borne experiment designed to measure the composition and energy spectra of cosmic rays of charge Z = 1 to 26 up to an energy of ~ 10^15 eV. CREAM had two successful flights on long-duration ball oons (LDB) launched from Mc- Murdo Station, Antarctica, in December 2004 and December 2005. CREAM-I achieves a substantial measurement redundancy by employing multiple detector systems, namely a Timing Charge Detector and a Silicon Charge Detector (SCD) for particle identification, and a Transition Radiation Detector and a sampling tungsten/scintillating-fiber ionization calorimeter (CAL) for energy measurement. In this paper, preliminary energy spectra of various elements measured with CAL/SCD during the first 42-day flight are presented.
Protons and helium nuclei are the most abundant components of the cosmic radiation. Precise measurements of their fluxes are needed to understand the acceleration and subsequent propagation of cosmic rays in the Galaxy. We report precision measuremen ts of the proton and helium spectra in the rigidity range 1 GV-1.2 TV performed by the satellite-borne experiment PAMELA. We find that the spectral shapes of these two species are different and cannot be well described by a single power law. These data challenge the current paradigm of cosmic-ray acceleration in supernova remnants followed by diffusive propagation in the Galaxy. More complex processes of acceleration and propagation of cosmic rays are required to explain the spectral structures observed in our data.
122 - K. Abe , H. Fuke , S. Haino 2015
The BESS-Polar Collaboration measured the energy spectra of cosmic-ray protons and helium during two long-duration balloon flights over Antarctica in December 2004 and December 2007, at substantially different levels of solar modulation. Proton and h elium spectra probe the origin and propagation history of cosmic rays in the galaxy, and are essential to calculations of the expected spectra of cosmic-ray antiprotons, positrons, and electrons from interactions of primary cosmic-ray nuclei with the interstellar gas, and to calculations of atmospheric muons and neutrinos. We report absolute spectra at the top of the atmosphere for cosmic-ray protons in the kinetic energy range 0.2-160 GeV and helium nuclei 0.15-80 GeV/nucleon. The corresponding magnetic rigidity ranges are 0.6-160 GV for protons and 1.1-160 GV for helium. These spectra are compared to measurements from previous BESS flights and from ATIC-2, PAMELA, and AMS-02. We also report the ratio of the proton and helium fluxes from 1.1 GV to 160 GV and compare to ratios from PAMELA and AMS-02.
The Cosmic Ray Energetics And Mass (CREAM) balloon experiment had two successful flights in 2004/05 and 2005/06. It was designed to perform energy measurements from a few GeV up to 1000 TeV, taking advantage of different detection techniques. The fir st instrument, CREAM-1, combined a transition radiation detector with a calorimeter to provide independent energy measurements of cosmicraynuclei. Each detector was calibrated with particle beams in a limited range of energies. In order to assess the absolute energy scale of the instrument and to investigate the systematic effects of each technique, a cross-calibration was performed by comparing the two independent energy estimates on selected samples of oxygen and carbon nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا