ﻻ يوجد ملخص باللغة العربية
Cosmic-ray proton and helium spectra have been measured with the balloon-borne Cosmic Ray Energetics And Mass experiment flown for 42 days in Antarctica in the 2004-2005 austral summer season. High-energy cosmic-ray data were collected at an average altitude of ~38.5 km with an average atmospheric overburden of ~3.9 g cm$^{-2}$. Individual elements are clearly separated with a charge resolution of ~0.15 e (in charge units) and ~0.2 e for protons and helium nuclei, respectively. The measured spectra at the top of the atmosphere are represented by power laws with a spectral index of -2.66 $pm$ 0.02 for protons from 2.5 TeV to 250 TeV and -2.58 $pm$ 0.02 for helium nuclei from 630 GeV/nucleon to 63 TeV/nucleon. They are harder than previous measurements at a few tens of GeV/nucleon. The helium flux is higher than that expected from the extrapolation of the power law fitted to the lower-energy data. The relative abundance of protons to helium nuclei is 9.1 $pm$ 0.5 for the range from 2.5 TeV/nucleon to 63 TeV/nucleon. This ratio is considerably smaller than the previous measurements at a few tens of GeV/nucleon.
Primary cosmic-ray elemental spectra have been measured with the balloon-borne Cosmic Ray Energetics And Mass (CREAM) experiment since 2004. The third CREAM payload (CREAM-III) flew for 29 days during the 2007-2008 Antarctic season. Energies of incid
The Cosmic Ray Energetics And Mass (CREAM) is a balloon-borne experiment designed to measure the composition and energy spectra of cosmic rays of charge Z = 1 to 26 up to an energy of ~ 10^15 eV. CREAM had two successful flights on long-duration ball
Protons and helium nuclei are the most abundant components of the cosmic radiation. Precise measurements of their fluxes are needed to understand the acceleration and subsequent propagation of cosmic rays in the Galaxy. We report precision measuremen
The BESS-Polar Collaboration measured the energy spectra of cosmic-ray protons and helium during two long-duration balloon flights over Antarctica in December 2004 and December 2007, at substantially different levels of solar modulation. Proton and h
A new measurement of the primary cosmic-ray proton and helium fluxes from 3 to 350 GeV was carried out by the balloon-borne CAPRICE experiment in 1998. This experimental setup combines different detector techniques and has excellent particle discrimi