ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a compositional nonparametric method in which a model is expressed as a labeled binary tree of $2k+1$ nodes, where each node is either a summation, a multiplication, or the application of one of the $q$ basis functions to one of the $p$ covariates. We show that in order to recover a labeled binary tree from a given dataset, the sufficient number of samples is $O(klog(pq)+log(k!))$, and the necessary number of samples is $Omega(klog (pq)-log(k!))$. We further propose a greedy algorithm for regression in order to validate our theoretical findings through synthetic experiments.
Spatio-temporal data is intrinsically high dimensional, so unsupervised modeling is only feasible if we can exploit structure in the process. When the dynamics are local in both space and time, this structure can be exploited by splitting the global
We use statistical learning methods to construct an adaptive state estimator for nonlinear stochastic systems. Optimal state estimation, in the form of a Kalman filter, requires knowledge of the systems process and measurement uncertainty. We propose
A new procedure, called DDa-procedure, is developed to solve the problem of classifying d-dimensional objects into q >= 2 classes. The procedure is completely nonparametric; it uses q-dimensional depth plots and a very efficient algorithm for discrim
We introduce a method for reconstructing an infinitesimal normalizing flow given only an infinitesimal change to a (possibly unnormalized) probability distribution. This reverses the conventional task of normalizing flows -- rather than being given s
In federated learning problems, data is scattered across different servers and exchanging or pooling it is often impractical or prohibited. We develop a Bayesian nonparametric framework for federated learning with neural networks. Each data server is