ﻻ يوجد ملخص باللغة العربية
We have investigated the effects of low-energy ion beam irradiations using argon clusters on the chemical and electronic properties of LaAlO3/SrTiO3 (LAO/STO) heterointerfaces by combining X-ray photoelectron spectroscopy (XPS) and electrical transport measurements. Due to its unique features, we show that a short-time cluster ion irradiation of the LAO surface induces indirect modifications in the chemical properties of the buried STO substrate, with (1) a lowering of Ti atoms oxidation states (from Ti4+ to Ti3+ and Ti2+) correlated to the formation of oxygen vacancies at the LAO surface and (2) the creation of new surface states for Sr atoms. Contrary to what is observed by using higher energy ion beam techniques, this leads to an increase of the electrical conductivity at the LAO/STO interface. Our XPS data clearly reveal the existence of dynamical processes on the titanium and strontium atoms, which compete with the effect of the cluster ion beam irradiation. These relaxation effects are in part attributed to the diffusion of the ion-induced oxygen vacancies in the entire heterostructure, since an increase of the interfacial metallicity is also evidenced far from the irradiated area. These results demonstrate that a local perturbation of the LAO surface can induce new properties at the interface and in the entire heterostructure. This study highlights the possibility of tuning the electronic properties of LAO/STO interfaces by surface engineering, confirming experimentally the intimate connection between LAO surface chemistry and electronic properties of LAO/STO interfaces.
Ferromagnetism and superconductivity are in most cases adverse. However, recent experiments reveal that they coexist at interfaces of LaAlO3 and SrTiO3. We analyze the magnetic state within density functional theory and provide evidence that magnetis
A good description of the electronic structure of BiS$_{2}$-based superconductors is essential to understand their phase diagram, normal state and superconducting properties. To describe the first reports of normal state electronic structure features
The LAO/STO interface hosts a two-dimensional electron system that is unusually sensitive to the application of an in-plane magnetic field. Low-temperature experiments have revealed a giant negative magnetoresistance (dropping by 70%), attributed to
The discovery that the interface between two band gap insulators LaAlO3 and SrTiO3 is highly conducting has raised an enormous interest in the field of oxide electronics. The LAlO3/SrTiO3 interface can be tuned using an electric field and switched fr
Recently the superconductivity has been discovered in the rock-salt structured binary lanthanum monoxide LaO through the state-of-the-art oxide thin-film epitaxy. This work reveals the normal state of superconducting LaO to be a $Z_2$ nontrivial topo