ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant negative magnetoresistance driven by spin-orbit coupling at the LAO/STO interface

105   0   0.0 ( 0 )
 نشر من قبل Mathias Diez
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The LAO/STO interface hosts a two-dimensional electron system that is unusually sensitive to the application of an in-plane magnetic field. Low-temperature experiments have revealed a giant negative magnetoresistance (dropping by 70%), attributed to a magnetic-field induced transition between interacting phases of conduction electrons with Kondo-screened magnetic impurities. Here we report on experiments over a broad temperature range, showing the persistence of the magnetoresistance up to the 20~K range --- indicative of a single-particle mechanism. Motivated by a striking correspondence between the temperature and carrier density dependence of our magnetoresistance measurements we propose an alternative explanation. Working in the framework of semiclassical Boltzmann transport theory we demonstrate that the combination of spin-orbit coupling and scattering from finite-range impurities can explain the observed magnitude of the negative magnetoresistance, as well as the temperature and electron density dependence.

قيم البحث

اقرأ أيضاً

The spin currents generated by spin-orbit coupling (SOC) in the nonmagnetic metal layer or at the interface with broken inversion symmetry are of particular interest and importance. Here, we have explored the spin current generation mechanisms throug h the spin-orbit torques (SOTs) measurements in the Ru/Fe heterostructures with weak perpendicular magnetic anisotropy (PMA). Although the spin Hall angle (SHA) of Ru is smaller than that in Pt, Ta or W, reversible SOT in Ru/Fe heterostructures can still be realized. Through non-adiabatic harmonic Hall voltage measurements and macrospin simulation, the effective SHA in Ru/Fe heterostructures is compared with Pt. Moreover, we also explore that the spin current driven by interface strongly depends on the electrical conductivities. Our results suggest a new method for efficiently generating finite spin currents in ferromagnet/nonmagnetic metal bilayers, which establishes new opportunities for fundamental study of spin dynamics and transport in ferromagnetic systems.
Magic-angle twisted bilayer graphene (MtBLG) has proven to be an extremely promising new platform to realize and study a host of emergent quantum phases arising from the strong correlations in its narrow bandwidth flat band. In this regard, thermal t ransport phenomena like thermopower, in addition to being coveted technologically, is also sensitive to the particle-hole (PH) asymmetry, making it a crucial tool to probe the underlying electronic structure of this material. We have carried out thermopower measurements of MtBLG as a function of carrier density, temperature and magnetic field, and report the observation of an unusually large thermopower reaching up to a value as high as $sim bf{100mu V/K}$ at a low temperature of 1K. Surprisingly, our observed thermopower exhibiting peak-like features in close correspondence to the resistance peaks around the integer Moire fillings, including the Dirac Point, violating the Mott formula. %Surprisingly, our observed thermopower exhibits peak-like features in close correspondence to the resistance peaks around the integer Moire fillings, including the Dirac Point, which completely violates the Mott formula. We show that the large thermopower peaks and their %non-monotonic dependence with temperature and magnetic field associated behaviour arise from the emergent highly PH asymmetric electronic structure due to the cascade of Dirac revivals. Furthermore, the thermopower shows an anomalous peak around the superconducting transition on the hole side and points towards the possible role of enhanced superconducting fluctuations in MtBLG.
Novel physical phenomena arising at the interface of complex oxide heterostructures offer exciting opportunities for the development of future electronic devices. Using the prototypical LaAlO$_3$/SrTiO$_3$ interface as a model system, we employ a sin gle-step lithographic process to realize gate tunable Josephson junctions through a combination of lateral confinement and local side gating. The action of the side gates is found to be comparable to that of a local back gate, constituting a robust and efficient way to control the properties of the interface at the nanoscale. We demonstrate that the side gates enable reliable tuning of both the normal-state resistance and the critical (Josephson) current of the constrictions. The conductance and Josephson current show mesoscopic fluctuations as a function of the applied side gate voltage, and the analysis of their amplitude enables the extraction of the phase coherence and thermal lengths. Finally, we realize a superconducting quantum interference device in which the critical currents of each of the constriction-type Josephson junctions can be controlled independently via the side gates.
The Rashba-Edelstein effect stems from the interaction between the electrons spin and its momentum induced by spin-orbit interaction at an interface or a surface. It was shown that the inverse Rashba-Edelstein effect can be used to convert a spin- in to a charge current. Here, we demonstrate that a Bi/Ag Rashba interface can even drive an adjacent ferromagnet to resonance. We employ a spin-torque ferromagnetic resonance excitation/detection scheme which was developed originally for a bulk spin-orbital effect, the spin Hall effect. In our experiment, the direct Rashba-Edelstein effect generates an oscillating spin current from an alternating charge current driving the magnetization precession in a neighboring permalloy (Py, Ni80Fe20) layer. Electrical detection of the magnetization dynamics is achieved by a rectification mechanism of the time dependent multilayer resistance arising from the anisotropic magnetoresistance.
Spin-orbit torque nano-oscillators based on bilayers of ferromagnetic (FM) and nonmagnetic (NM) metals are ultra-compact current-controlled microwave signal sources. They serve as a convenient testbed for studies of spin-orbit torque physics and are attractive for practical applications such as microwave assisted magnetic recording, neuromorphic computing, and chip-to-chip wireless communications. However, a major drawback of these devices is low output microwave power arising from the relatively small anisotropic magnetoresistance (AMR) of the FM layer. Here we experimentally show that the output power of a spin-orbit torque nano-oscillator can be enhanced by nearly three orders of magnitude without compromising its structural simplicity. Addition of a FM reference layer to the oscillator allows us to employ current-in-plane giant magnetoresistance (CIP GMR) to boost the output power of the device. This enhancement of the output power is a result of both large magnitude of GMR compared to that of AMR and different angular dependences of GMR and AMR. Our results pave the way for practical applications of spin-orbit torque nano-oscillators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا