ﻻ يوجد ملخص باللغة العربية
We study the general properties of commutative differential graded algebras in the category of representations over a reductive algebraic group with an injective central cocharacter. Besides describing the derived category of differential graded modules over such an algebra, we also provide a criterion for the existence of a t-structure on the derived category together with a characterization of the coordinate ring of the Tannakian fundamental group of its heart.
A graded-division algebra is an algebra graded by a group such that all nonzero homogeneous elements are invertible. This includes division algebras equipped with an arbitrary group grading (including the trivial grading). We show that a classificati
The concept of Koszul differential graded algebra (Koszul DG algebra) is introduced. Koszul DG algebras exist extensively, and have nice properties similar to the classic Koszul algebras. A DG version of the Koszul duality is proved. When the Koszul
Let $k$ be a field containing an algebraically closed field of characteristic zero. If $G$ is a finite group and $D$ is a division algebra over $k$, finite dimensional over its center, we can associate to a faithful $G$-grading on $D$ a normal abelia
We consider finite-dimensional irreducible transitive graded Lie algebras $L = sum_{i=-q}^rL_i$ over algebraically closed fields of characteristic three. We assume that the null component $L_0$ is classical and reductive. The adjoint representation o
Let $H$ be a finite dimensional semisimple Hopf algebra, $A$ a differential graded (dg for short) $H$-module algebra. Then the smash product algebra $A#H$ is a dg algebra. For any dg $A#H$-module $M$, there is a quasi-isomorphism of dg algebras: $mat