ﻻ يوجد ملخص باللغة العربية
We demonstrate a 10Gb/s Graphene Phase Modulator (GPM) integrated in a Mach-Zehnder interferometer configuration. This is a compact device, with a phase-shifter length of only 300$mu$m, and 35dB extinction ratio. The GPM has modulation efficiency of 0.28Vcm, one order of magnitude higher compared to state-of-the-art depletion p-n junction Si phase modulators. Our GPM operates with 2V peak-to-peak driving voltage in a push-pull configuration, and it has been tested in a binary transmission of a non-return-to-zero data stream over 50km single mode fibre. This device is the key building block for graphene-based integrated photonics, enabling compact and energy efficient hybrid Si-graphene modulators for telecom, datacom and other applications
The hyperbolic phonon-polaritons within the Reststrahlen band of hBN are of great interest for applications in nanophotonics as they are capable of propagating light signals with low losses over large distances. However, due to the phononic nature of
Macroscopic quantum phase coherence has one of its pivotal expressions in the Josephson effect [1], which manifests itself both in charge [2] and energy transport [3-5]. The ability to master the amount of heat transferred through two tunnel-coupled
We study the scattering phase shift of Dirac fermions at graphene edge. We find that when a plane wave of a Dirac fermion is reflected at an edge of graphene, its reflection phase is shifted by the geometric phase resulting from the change of the pse
We numerically study the interaction of a terahertz pulse with monolayer graphene. We observe that the electron momentum density is affected by the carrier-envelope phase (CEP) of the single- to few-cycle terahertz laser pulse that induces the electr
Spatially indirect excitons can be created when an electron and a hole, confined to separate layers of a double quantum well system, bind to form a composite Boson. Because there is no recombination pathway such excitons are long lived making them ac