ترغب بنشر مسار تعليمي؟ اضغط هنا

Graphene Phase Modulator

48   0   0.0 ( 0 )
 نشر من قبل Andrea Ferrari
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate a 10Gb/s Graphene Phase Modulator (GPM) integrated in a Mach-Zehnder interferometer configuration. This is a compact device, with a phase-shifter length of only 300$mu$m, and 35dB extinction ratio. The GPM has modulation efficiency of 0.28Vcm, one order of magnitude higher compared to state-of-the-art depletion p-n junction Si phase modulators. Our GPM operates with 2V peak-to-peak driving voltage in a push-pull configuration, and it has been tested in a binary transmission of a non-return-to-zero data stream over 50km single mode fibre. This device is the key building block for graphene-based integrated photonics, enabling compact and energy efficient hybrid Si-graphene modulators for telecom, datacom and other applications



قيم البحث

اقرأ أيضاً

The hyperbolic phonon-polaritons within the Reststrahlen band of hBN are of great interest for applications in nanophotonics as they are capable of propagating light signals with low losses over large distances. However, due to the phononic nature of the polaritons in hBN, amplitude modulation of its signal proves to be difficult and has been underexplored. In this paper, we propose theoretically a broadband efficient amplitude modulator for hyperbolic rays in hBN operating in the frequency range between 1450 cm$^{-1}$ and 1550 cm$^{-1}$. The modulating region comprises a few tens of nanometers wide gap carved within the hBN slab and covered by a graphene layer, where electrostatically gated graphene serves as a mediator that facilitates the coupling between phonon-polaritons on each side of the gap through plasmonic modes within graphene. We demonstrate that such an ultra compact modulator has insertion losses as low as 3 dB and provides modulation depth varying between 14 and 20 dB within the type-II hyperbolicity region of hBN.
Macroscopic quantum phase coherence has one of its pivotal expressions in the Josephson effect [1], which manifests itself both in charge [2] and energy transport [3-5]. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics [4-6], and is expected to be a key tool in a number of nanoscience fields, including solid state cooling [7], thermal isolation [8, 9], radiation detection [7], quantum information [10, 11] and thermal logic [12]. Here we show the realization of the first balanced Josephson heat modulator [13] designed to offer full control at the nanoscale over the phase-coherent component of thermal currents. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase-engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters [14], heat pumps [15] and time-dependent electronic engines [16-19].
We study the scattering phase shift of Dirac fermions at graphene edge. We find that when a plane wave of a Dirac fermion is reflected at an edge of graphene, its reflection phase is shifted by the geometric phase resulting from the change of the pse udospin of the Dirac fermion in the reflection. The geometric phase is the Pancharatnam-Berry phase that equals the half of the solid angle on Bloch sphere determined by the propagation direction of the incident wave and also by the orientation angle of the graphene edge. The geometric phase is finite at zigzag edge in general, while it always vanishes at armchair edge because of intervalley mixing. To demonstrate its physical effects, we first connect the geometric phase with the energy band structure of graphene nanoribbon with zigzag edge. The magnitude of the band gap of the nanoribbon, that opens in the presence of the staggered sublattice potential induced by edge magnetization, is related to the geometric phase. Second, we numerically study the effect of the geometric phase on the Veselago lens formed in a graphene nanoribbon. The interference pattern of the lens is distinguished between armchair and zigzag nanoribbons, which is useful for detecting the geometric phase.
We numerically study the interaction of a terahertz pulse with monolayer graphene. We observe that the electron momentum density is affected by the carrier-envelope phase (CEP) of the single- to few-cycle terahertz laser pulse that induces the electr on dynamics. In particular, we see strong asymmetric electron momentum distributions for non-zero values of the CEP. We explain the origin of the asymmetry within the adiabatic-impulse model by finding conditions to reach minimal adiabatic gap between the valence band and the conduction band. We discuss how these conditions and the interference pattern, emanating from successive non-adiabatic transitions at this minimal gap, affect the electron momentum density and how they are modified by the CEP. This opens the door to control fundamental time-dependent electron dynamics in the tunneling regime in Dirac materials. Also, this control suggests a way to measure the CEP of a terahertz laser pulse when it interacts with condensed matter systems.
Spatially indirect excitons can be created when an electron and a hole, confined to separate layers of a double quantum well system, bind to form a composite Boson. Because there is no recombination pathway such excitons are long lived making them ac cessible to transport studies. Moreover, the ability to independently tune both the intralayer charge density and interlayer electron-hole separation provides the capability to reach the low-density, strongly interacting regime where a BEC-like phase transition into a superfluid ground state is anticipated. To date, transport signatures of the superfluid condensate phase have been seen only in quantum Hall bilayers composed of double well GaAs heterostructures. Here we report observation of the exciton condensate in the quantum Hall effect regime of double layer structures of bilayer graphene. Correlation between the layers is identified by quantized Hall drag appearing at matched layer densities, and the dissipationless nature of the phase is confirmed in the counterflow geometry. Independent tuning of the layer densities and interlayer bias reveals a selection rule involving both the orbital and valley quantum number between the symmetry-broken states of bilayer graphene and the condensate phase, while tuning the layer imbalance stabilizes the condensate to temperatures in excess of 4K. Our results establish bilayer graphene quantum wells as an ideal system in which to study the rich phase diagram of strongly interacting Bosonic particles in the solid state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا