ﻻ يوجد ملخص باللغة العربية
All-electrical control of a dynamic magnetoelectric effect is demonstrated in a classical multiferroic manganite DyMnO3, a material containing coupled antiferromagnetic and ferroelectric orders. Due to intrinsic magnetoelectric coupling with electromagnons a linearly polarized terahertz light rotates upon passing through the sample. The amplitude and the direction of the polarization rotation are defined by the orientation of ferroelectric domains and can be switched by static voltage. These experiments allow the terahertz polarization to be tuned using the dynamic magnetoelectric effect.
The behavior of the low-frequency electromagnon in multiferroic DyMnO3 has been investigated in external magnetic fields and in a magnetically ordered state. Significant softening of the electromagnon frequency is observed for external magnetic field
Magnetodielectric materials are characterized by a strong coupling of magnetic and dielectric properties and in rare cases simultaneously exhibit both, magnetic and polar order. Among other multiferroics, TbMnO3 and GdMnO3 reveal a strong magneto-die
The coupling of magnetic chiralities to the ferroelectric polarisation in multiferroic RbFe(MoO$_4$)$_2$ is investigated by neutron spherical polarimetry. Because of the axiality of the crystal structure below $T_textrm{c}$ = 190 K, helicity and tria
The magnetic structure of multiferroic Ni$_3$V$_2$O$_8$ has been investigated using non-resonant X-ray magnetic scattering. Incident circularly polarized X-rays combined with full polarization analysis of the scattered beam is shown to yield high sen
The control of multiferroic domains through external electric fields has been studied by dielectric measurements and by polarized neutron diffraction on single-crystalline TbMnO$_3$. Full hysteresis cycles were recorded by varying an external field o