ترغب بنشر مسار تعليمي؟ اضغط هنا

The interfacial nature of proximity induced magnetism and the Dzyaloshinskii-Moriya interaction at the Pt/Co interface

85   0   0.0 ( 0 )
 نشر من قبل Aidan Hindmarch
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Dzyaloshinskii-Moriya interaction (DMI) has been shown to stabilise Ne{e}l domain walls in magnetic thin films, allowing high domain wall velocities driven by spin current effects. DMI occurs at the interface between ferromagnetic and heavy metal layers with strong spin-orbit coupling, but details of the interaction remain to be understood and the role of proximity induced magnetism (PIM) in the heavy metal is unknown. We report interfacial DMI and PIM in Pt determined as a function of Au and Ir spacer layers in Pt/Co/Au,Ir/Pt. The length-scale for both interactions is sensitive to sub-nanometre changes in the spacer thickness, and they correlate over sub mono-layer spacer thicknesses, but not for thicker spacers. The spacer layer thickness dependence of the Pt PIM for both Au and Ir shows a rapid monotonic decay, while the DMI changes rapidly but has a two-step approach to saturation and continues to change, even after the PIM is lost.

قيم البحث

اقرأ أيضاً

Despite a decade of research, the precise mechanisms occurring at interfaces underlying the Dzyaloshinskii-Moriya interaction (DMI), and thus the possibility of fine-tuning it, are not yet fully identified. In this study, we investigate the origin of the interfacial DMI, aiming at disentangling how independent are the interfaces around the ferromagnetic layer, and what are their relative contributions to the effective DMI amplitude. For this purpose, we have grown and investigated a large variety of systems with a common structure Pt$|$Co$|M$ with $M =$ Ni, Pd, Ru, Al, Al$|$Ta and MoSi. We explore the correlation between the effective interfacial DMI, and different intrinsic properties of metals, namely atomic number, electronegativity and work function difference at the Co$|M$ interfaces. We find a linear relationship between interfacial DMI and the work function difference between the two elements, hence relating the nature of this behavior to the interfacial potential gradient at the metallic interfaces. The understanding of the DMI mechanism is of utmost importance since it opens up the possibility of precisely engineering the magnetic and hence the spintronic properties for future devices.
The interfacial Dzyaloshinskii-Moriya interaction (iDMI), surface anisotropy energy, and spin pumping at the Ir/Co interface are experimentally investigated by performing Brillouin light scattering. Contrary to previous reports, we suggest that the s ign of the iDMI at the Ir/Co interface is the same as in the case of the Pt/Co interface. We also find that the magnitude of the iDMI energy density is relatively smaller than in the case of the Pt/Co interface, despite the large strong spin-orbit coupling (SOC) of Ir. The saturation magnetization and the perpendicular magnetic anisotropy (PMA) energy are significantly improved due to a strong SOC. Our findings suggest that an SOC in an Ir/Co system behaves in different ways for iDMI and PMA. Finally, we determine the spin pumping effect at the Ir/Co interface, and it increases the Gilbert damping constant from 0.012 to 0.024 for 1.5 nmthick Co.
We studied electric field modification of magnetic properties in a Pt/Co/AlO$_x$ trilayer via magneto-optical Kerr microscopy. We observed the spontaneous formation of labyrinthine magnetic domain structure due to thermally activated domain nucleatio n and propagation under zero applied magnetic field. A variation of the period of the labyrinthine structure under electric field is observed as well as saturation magnetization and magnetic anisotropy variations. Using an analytical formula of the stripe equilibrium width we estimate the variation of the interfacial Dzyaloshinskii-Moriya interaction under electric field as function of the exchange stiffness constant.
The interfacial Dzyaloshinskii-Moriya interaction (iDMI) is attracting great interests for spintronics. An iDMI constant larger than 3 mJ/m^2 is expected to minimize the size of skyrmions and to optimize the DW dynamics. In this study, we experimenta lly demonstrate an enhanced iDMI in Pt/Co/X/MgO ultra-thin film structures with perpendicular magnetization. The iDMI constants were measured using a field-driven creep regime domain expansion method. The enhancement of iDMI with an atomically thin insertion of Ta and Mg is comprehensively understood with the help of ab-initio calculations. Thermal annealing has been used to crystallize the MgO thin layer for improving tunneling magneto-resistance (TMR), but interestingly it also provides a further increase of the iDMI constant. An increase of the iDMI constant up to 3.3 mJ/m^2 is shown, which could be promising for the scaling down of skyrmion electronics.
A major challenge for future spintronics is to develop suitable spin transport channels with long spin lifetime and propagation length. Graphene can meet these requirements, even at room temperature. On the other side, taking advantage of the fast mo tion of chiral textures, i.e., Neel-type domain walls and magnetic skyrmions, can satisfy the demands for high-density data storage, low power consumption and high processing speed. We have engineered epitaxial structures where an epitaxial ferromagnetic Co layer is sandwiched between an epitaxial Pt(111) buffer grown in turn onto MgO(111) substrates and a graphene layer. We provide evidence of a graphene-induced enhancement of the perpendicular magnetic anisotropy up to 4 nm thick Co films, and of the existence of chiral left-handed Neel-type domain walls stabilized by the effective Dzyaloshinskii-Moriya interaction (DMI) in the stack. The experiments show evidence of a sizeable DMI at the gr/Co interface, which is described in terms of a conduction electron mediated Rashba-DMI mechanism and points opposite to the Spin Orbit Coupling-induced DMI at the Co/Pt interface. In addition, the presence of graphene results in: i) a surfactant action for the Co growth, producing an intercalated, flat, highly perfect fcc film, pseudomorphic with Pt and ii) an efficient protection from oxidation. The magnetic chiral texture is stable at room temperature and grown on insulating substrate. Our findings open new routes to control chiral spin structures using interfacial engineering in graphene-based systems for future spin-orbitronics devices fully integrated on oxide substrates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا