ترغب بنشر مسار تعليمي؟ اضغط هنا

Element-selective modulation of interfacial Dzyaloshinskii-Moriya interaction in Pt|Co|Metal based multilayers

149   0   0.0 ( 0 )
 نشر من قبل Fernando Ajejas
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite a decade of research, the precise mechanisms occurring at interfaces underlying the Dzyaloshinskii-Moriya interaction (DMI), and thus the possibility of fine-tuning it, are not yet fully identified. In this study, we investigate the origin of the interfacial DMI, aiming at disentangling how independent are the interfaces around the ferromagnetic layer, and what are their relative contributions to the effective DMI amplitude. For this purpose, we have grown and investigated a large variety of systems with a common structure Pt$|$Co$|M$ with $M =$ Ni, Pd, Ru, Al, Al$|$Ta and MoSi. We explore the correlation between the effective interfacial DMI, and different intrinsic properties of metals, namely atomic number, electronegativity and work function difference at the Co$|M$ interfaces. We find a linear relationship between interfacial DMI and the work function difference between the two elements, hence relating the nature of this behavior to the interfacial potential gradient at the metallic interfaces. The understanding of the DMI mechanism is of utmost importance since it opens up the possibility of precisely engineering the magnetic and hence the spintronic properties for future devices.



قيم البحث

اقرأ أيضاً

We studied electric field modification of magnetic properties in a Pt/Co/AlO$_x$ trilayer via magneto-optical Kerr microscopy. We observed the spontaneous formation of labyrinthine magnetic domain structure due to thermally activated domain nucleatio n and propagation under zero applied magnetic field. A variation of the period of the labyrinthine structure under electric field is observed as well as saturation magnetization and magnetic anisotropy variations. Using an analytical formula of the stripe equilibrium width we estimate the variation of the interfacial Dzyaloshinskii-Moriya interaction under electric field as function of the exchange stiffness constant.
The interfacial Dzyaloshinskii-Moriya interaction (iDMI) is attracting great interests for spintronics. An iDMI constant larger than 3 mJ/m^2 is expected to minimize the size of skyrmions and to optimize the DW dynamics. In this study, we experimenta lly demonstrate an enhanced iDMI in Pt/Co/X/MgO ultra-thin film structures with perpendicular magnetization. The iDMI constants were measured using a field-driven creep regime domain expansion method. The enhancement of iDMI with an atomically thin insertion of Ta and Mg is comprehensively understood with the help of ab-initio calculations. Thermal annealing has been used to crystallize the MgO thin layer for improving tunneling magneto-resistance (TMR), but interestingly it also provides a further increase of the iDMI constant. An increase of the iDMI constant up to 3.3 mJ/m^2 is shown, which could be promising for the scaling down of skyrmion electronics.
254 - A. Sud , S. Tacchi , D. Sagkovits 2021
We show a method to control magnetic interfacial effects in multilayers with Dzyaloshinskii-Moriya interaction (DMI) using helium (He$^{+}$) ion irradiation. We compare results from SQUID magnetometry, ferromagnetic resonance as well as Brillouin lig ht scattering results on multilayers with DMI as a function of irradiation fluence to study the effect of irradiation on the magnetic properties of the multilayers. Our results show clear evidence of the He$^{+}$ irradiation effects on the magnetic properties which is consistent with interface modification due to the effects of the He$^{+}$ irradiation. This external degree of freedom offers promising perspectives to further improve the control of magnetic skyrmions in multilayers, that could push them towards integration in future technologies, such as in low-power neuromorphic computing.
Chiral spin textures at the interface between ferromagnetic and heavy nonmagnetic metals, such as Neel-type domain walls and skyrmions, have been studied intensively because of their great potential for future nanomagnetic devices. The Dyzaloshinskii -Moriya interaction (DMI) is an essential phenomenon for the formation of such chiral spin textures. In spite of recent theoretical progress aiming at understanding the microscopic origin of the DMI, an experimental investigation unravelling the physics at stake is still required. Here, we experimentally demonstrate the close correlation of the DMI with the anisotropy of the orbital magnetic moment and with the magnetic dipole moment of the ferromagnetic metal. The density functional theory and the tight-binding model calculations reveal that asymmetric electron occupation in orbitals gives rise to this correlation.
The interface between a ferromagnet (FM) or antiferromagnet (AFM) and a heavy metal (HM) results in an antisymmetric exchange interaction known as the interfacial Dzyaloshinskii-Moriya interaction (iDMI) which favors non-collinear spin configurations . The iDMI is responsible for stabilizing noncollinear spin textures such as skyrmions in materials with bulk inversion symmetry. Interfacial DMI values have been previously determined theoretically and experimentally for FM/HM interfaces, and, in this work, values are calculated for the metallic AFM MnPt and the insulating AFM NiO. The heavy metals considered are W, Re, and Au. The effects of the AFM and HM thicknesses are determined. The iDMI values of the MnPt heterolayers are comparable to those of the common FM materials, and those of NiO are lower.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا