ترغب بنشر مسار تعليمي؟ اضغط هنا

A unified model for the maximum mass-scales of molecular clouds, stellar clusters, and high-redshift clumps

54   0   0.0 ( 0 )
 نشر من قبل Marta Reina-Campos
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a simple, self-consistent model to predict the maximum masses of giant molecular clouds (GMCs), stellar clusters and high-redshift clumps as a function of the galactic environment. Recent works have proposed that these maximum masses are set by shearing motions and centrifugal forces, but we show that this idea is inconsistent with the low masses observed across an important range of local-Universe environments, such as low-surface density galaxies and galaxy outskirts. Instead, we propose that feedback from young stars can disrupt clouds before the global collapse of the shear-limited area is completed. We develop a shear-feedback hybrid model that depends on three observable quantities: the gas surface density, the epicylic frequency, and the Toomre parameter. The model is tested in four galactic environments: the Milky Way, the Local Group galaxy M31, the spiral galaxy M83, and the high-redshift galaxy zC406690. We demonstrate that our model simultaneously reproduces the observed maximum masses of GMCs, clumps and clusters in each of these environments. We find that clouds and clusters in M31 and in the Milky Way are feedback-limited beyond radii of 8.4 and 4 kpc, respectively, whereas the masses in M83 and zC406690 are shear-limited at all radii. In zC406690, the maximum cluster masses decrease further due to their inspiral by dynamical friction. These results illustrate that the maximum masses change from being shear-limited to being feedback-limited as galaxies become less gas-rich and evolve towards low shear. This explains why high-redshift clumps are more massive than GMCs in the Local Universe.

قيم البحث

اقرأ أيضاً

We present a large suite of MHD simulations of turbulent, star-forming giant molecular clouds(GMCs) with stellar feedback, extending previous work by simulating 10 different random realizations for each point in the parameter space of cloud mass and size. It is found that oncethe clouds disperse due to stellar feedback, both self-gravitating star clusters and unbound stars generally remain, which arise from the same underlying continuum of substructured stellar density, ie. the hierarchical cluster formation scenario. The fraction of stars that are born within gravitationally-bound star clusters is related to the overall cloud star formation efficiency set by stellar feedback, but has significant scatter due to stochastic variations in the small-scale details of the star-forming gas flow. We use our numerical results to calibrate a model for mapping the bulk properties (mass, size, and metallicity) of self-gravitating GMCs onto the star cluster populations they form, expressed statistically in terms of cloud-level distributions. Synthesizing cluster catalogues from an observed GMC catalogue in M83, we find that this model predicts initial star cluster masses and sizes that are in good agreement with observations, using only standard IMF and stellar evolution models as inputs for feedback. Within our model, the ratio of the strength of gravity to stellar feedback is the key parameter setting the masses of star clusters, and of the various feedback channels direct stellar radiation(photon momentum and photoionization) is the most important on GMC scales.
The structure of molecular clouds (MCs) holds important clues on the physical processes that lead to their formation and subsequent evolution. While it is well established that turbulence imprints a self-similar structure to the clouds, other process es, such as gravity and stellar feedback, can break their scale-free nature. The break of self-similarity can manifest itself in the existence of characteristic scales that stand out from the underlying structure generated by turbulent motions. We investigate the structure of the Cygnus-X North and the Polaris MCs which represent two extremes in terms of their star formation activity. We characterize the structure of the clouds using the delta-variance ($Delta$-variance) spectrum. In Polaris, the structure of the cloud is self-similar over more than one order of magnitude in spatial scales. In contrast, the $Delta$-variance spectrum of Cygnus-X exhibits an excess and a plateau on physical scales of ~0.5-1.2 pc. In order to explain the observations for Cygnus-X, we use synthetic maps in which we overlay populations of discrete structures on top of a fractal Brownian motion (fBm) image. The properties of these structures such as their major axis sizes, aspect ratios, and column density contrasts are randomly drawn from parameterized distribution functions. We show that it is possible to reproduce a $Delta$-variance spectrum that resembles the one of the Cygnus-X cloud. We also use a reverse engineering approach in which we extract the compact structures in the Cygnus-X cloud and re-inject them on an fBm map. The calculated $Delta$-variance using this approach deviates from the observations and is an indication that the range of characteristic scales observed in Cygnus-X is not only due to the existence of compact sources, but is a signature of the whole population of structures, including more extended and elongated structures
We present measurements of the stellar mass fractions ($f_star$) for a sample of high-redshift ($0.93 le z le 1.32$) infrared-selected galaxy clusters from the Massive and Distant Clusters of WISE Survey (MaDCoWS) and compare them to the stellar mass fractions of Sunyaev-Zeldovich (SZ) effect-selected clusters in a similar mass and redshift range from the South Pole Telescope (SPT)-SZ Survey. We do not find a significant difference in mean $f_star$ between the two selection methods, though we do find an unexpectedly large range in $f_star$ for the SZ-selected clusters. In addition, we measure the luminosity function of the MaDCoWS clusters and find $m^*= 19.41pm0.07$, similar to other studies of clusters at or near our redshift range. Finally, we present SZ detections and masses for seven MaDCoWS clusters and new spectroscopic redshifts for five MaDCoWS clusters. One of these new clusters, MOO J1521+0452 at $z=1.31$, is the most distant MaDCoWS cluster confirmed to date.
This paper describes 3D simulations of the formation of collapsing cold clumps via thermal instability inside a larger cloud complex. The initial condition was a diffuse atomic, stationary, thermally unstable, 200pc diameter spherical cloud in pressu re equilibrium with low density surroundings. This was seeded with 10% density perturbations at the finest initial grid level (0.29pc) around n_H = 1.1cm^{-3} and evolved with self-gravity included. No magnetic field was imposed. Resimulations at a higher resolution of a region extracted from this simulation (down to 0.039pc), show that the thermal instability forms sheets, then filaments and finally clumps. The width of the filaments increases over time, in one particular case from 0.26 to 0.56pc. Thereafter clumps with sizes of around 5pc grow at the intersections of filaments. 21 distinct clumps, with properties similar to those observed in molecular clouds, are found by using the FellWalker algorithm to find minima in the gravitational potential. Not all of these are gravitationally bound, but the convergent nature of the flow and increasing central density suggest they are likely to form stars. Further simulation of the most massive clump shows the gravitational collapse to a density >10^6 cm^{-3}. These results provide realistic initial conditions that can be used to study feedback in individual clumps, interacting clumps and the entire molecular cloud complex.
176 - R. Retes-Romero 2020
Ever since their discovery, Infrared dark clouds (IRDCs) are generally considered to be the sites just at the onset of high-mass (HM) star formation. In recent years, it has been realized that not all IRDCs harbour HM Young Stellar Objects (YSOs). On ly those IRDCs satisfying a certain mass-size criterion, or equivalently above a certain threshold density, are found to contain HMYSOs. In all cases, IRDCs provide ideal conditions for the formation of stellar clusters. In this paper, we study the massive stellar content of IRDCs to re-address the relation between IRDCs and HM star formation. For this purpose, we have identified all IRDCs associated to a sample of 12 Galactic molecular clouds (MCs). The selected MCs have been the target of a systematic search for YSOs in an earlier study. The catalogued positions of YSOs have been used to search all YSOs embedded in each identified IRDC. In total, we have found 834 YSOs in 128 IRDCs. The sample of IRDCs have mean surface densities of 319 Mo/pc2, mean mass of 1062 Mo, and a mass function power-law slope -1.8, which are similar to the corresponding properties for the full sample of IRDCs and resulting physical properties in previous studies. We find that all those IRDCs containing at least one intermediate to high-mass young star satisfy the often-used mass-size criterion for forming HM stars. However, not all IRDCs satisfying the mass-size criterion contain HM stars. We find that the often used mass-size criterion corresponds to 35% probability of an IRDC forming a massive star. Twenty five (20%) of the IRDCs are potential sites of stellar clusters of mass more than 100 Mo.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا