ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical Ejections of Stars due to an Accelerating Gas Filament

134   0   0.0 ( 0 )
 نشر من قبل Tjarda Boekholt
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observations of the Orion-A integral shaped filament (ISF) have shown indications of an oscillatory motion of the gas filament. This evidence is based on both the wave-like morphology of the filament as well as the kinematics of the gas and stars, where the characteristic velocities of the stars require a dynamical heating mechanism. As proposed by Stutz and Gould (2016), such a heating mechanism (the Slingshot) may be the result of an oscillating gas filament in a gas-dominated (as opposed to stellar-mass dominated) system. Here we test this hypothesis with the first stellar-dynamical simulations in which the stars are subjected to the influence of an oscillating cylindrical potential. The accelerating, cylindrical background potential is populated with a narrow distribution of stars. By coupling the potential to N-body dynamics, we are able to measure the influence of the potential on the stellar distribution. The simulations provide evidence that the slingshot mechanism can successfully reproduce several stringent observational constraints. These include the stellar spread (both in projected position and in velocity) around the filament, the symmetry in these distributions, and a bulk motion of the stars with respect to the filament. Using simple considerations we show that star-star interactions are incapable of reproducing these spreads on their own when properly accounting for the gas potential. Thus, properly accounting for the gas potential is essential for understanding the dynamical evolution of star forming filamentary systems in the era of Gaia.



قيم البحث

اقرأ أيضاً

We perform simulations to test the effects of a moving gas filament on a young star cluster (i.e. the Slingshot Model). We model Orion Nebula Cluster-like clusters as Plummer spheres and the Integral Shaped Filament gas as a cylindrical potential. We observe that in a static filament, an initially spherical cluster evolves naturally into an elongated distribution of stars. For sinusoidal moving filaments, we observe different remnants, and classify them into 4 categories.%: 3 different objects and one transition object. Healthy clusters, where almost all the stars stay inside the filament and the cluster; destroyed clusters are the opposite case, with almost no particles in the filament or near the centre of density of the clusters; ejected clusters, where a large fraction of stars are close to the centre of density of the stars , but almost none of them in the filament; and transition clusters, where roughly the same number of particles is ejected from the cluster and from the filament. An {{Orion Nebula Cluster-like}} cluster might stay inside the filament or be ejected, but it will not be destroyed.
Observations with the Herschel Space Telescope have established that most of the star forming gas is organised in interstellar filaments, a finding that is supported by numerical simulations of the supersonic interstellar medium (ISM) where dense fil amentary structures are ubiquitous. We aim to understand the formation of these dense structures by performing observations covering the $^{12}$CO(4-3), $^{12}$CO(3-2), and various CO(2-1) isotopologue lines of the Musca filament, using the APEX telescope. The observed CO intensities and line ratios cannot be explained by PDR (photodissociation region) emission because of the low ambient far-UV field that is strongly constrained by the non-detections of the [C II] line at 158 $mu$m and the [O I] line at 63 $mu$m, observed with the upGREAT receiver on SOFIA, as well as a weak [C I] 609 $mu$m line detected with APEX. We propose that the observations are consistent with a scenario in which shock excitation gives rise to warm and dense gas close to the highest column density regions in the Musca filament. Using shock models, we find that the CO observations can be consistent with excitation by J-type low-velocity shocks. A qualitative comparison of the observed CO spectra with synthetic observations of dynamic filament formation simulations shows a good agreement with the signature of a filament accretion shock that forms a cold and dense filament from a converging flow. The Musca filament is thus found to be dense molecular post-shock gas. Filament accretion shocks that dissipate the supersonic kinetic energy of converging flows in the ISM may thus play a prominent role in the evolution of cold and dense filamentary structures.
Recent surveys of the Galactic plane in the dust continuum and CO emission lines reveal that large ($gtrsim 50$~pc) and massive ($gtrsim 10^5$~$M_odot$) filaments, know as giant molecular filaments (GMFs), may be linked to galactic dynamics and trace the mid-plane of the gravitational potential in the Milky Way. We have imaged one entire GMF located at $lsim$52--54$^circ$ longitude, GMF54 ($sim$68~pc long), in the empirical dense gas tracers using the HCN(1--0), HNC(1--0), HCO$^+$(1--0) lines, and their $^{13}$C isotopologue transitions, as well as the N$_2$H$^+$(1--0) line. We study the dense gas distribution, the column density probability density functions (N-PDFs) and the line ratios within the GMF. The dense gas molecular transitions follow the extended structure of the filament with area filling factors between 0.06 and 0.28 with respect to $^{13}$CO(1--0). We constructed the N-PDFs of H$_2$ for each of the dense gas tracers based on their column densities and assumed uniform abundance. The N-PDFs of the dense gas tracers appear curved in log-log representation, and the HCO$^+$ N-PDF has the largest log-normal width and flattest power-law slope index. Studying the N-PDFs for sub-regions of GMF54, we found an evolutionary trend in the N-PDFs that high-mass star forming and Photon-Dominate Regions (PDRs) have flatter power-law indices. The integrated intensity ratios of the molecular lines in GMF54 are comparable to those in nearby galaxies. In particular, the N$_2$H$^+$/$^{13}$CO ratio, which traces the dense gas fraction, has similar values in GMF54 and all nearby galaxies except ULIRGs.
Runaway OB stars are ejected from their parent clusters via two mechanisms, both involving multiple stars: the dynamical ejection scenario (DES) and the binary supernova scenario (BSS). We constrain the relative contributions from these two ejection mechanisms in the Small Magellanic Cloud (SMC) using data for 304 field OB stars from the spatially complete, Runaways and Isolated O-Type Star Spectroscopic Survey of the SMC (RIOTS4). We obtain stellar masses and projected rotational velocities $v_rsin i $ for the sample using RIOTS4 spectra, and use transverse velocities $v_{rm loc}$ from $it{Gaia}$ DR2 proper motions. Kinematic analyses of the masses, $v_rsin i $, non-compact binaries, high-mass X-ray binaries, and Oe/Be stars largely support predictions for the statistical properties of the DES and BSS populations. We find that dynamical ejections dominate over supernova ejections by a factor of $sim 2-3$ in the SMC, and our results suggest a high frequency of DES runaways and binary ejections. Objects seen as BSS runaways also include two-step ejections of binaries that are reaccelerated by SN kicks. We find that two-step runaways likely dominate the BSS runaway population. Our results further imply that any contribution from $it{in-situ}$ field OB star formation is small. Finally, our data strongly support the post-mass-transfer model for the origin of classical Oe/Be stars, providing a simple explanation for the bimodality in the $v_rsin i $ distribution and high, near-critical, Oe/Be rotation velocities. The close correspondence of Oe/Be stars with BSS predictions implies that the emission-line disks are long-lived.
We assess the contribution of dynamical hardening by direct three-body scattering interactions to the rate of stellar-mass black hole binary (BHB) mergers in galactic nuclei. We derive an analytic model for the single-binary encounter rate in a nucle us with spherical and disk components hosting a super-massive black hole (SMBH). We determine the total number of encounters $N_{rm GW}$ needed to harden a BHB to the point that inspiral due to gravitational wave emission occurs before the next three-body scattering event. This is done independently for both the spherical and disk components. Using a Monte Carlo approach, we refine our calculations for $N_{rm GW}$ to include gravitational wave emission between scattering events. For astrophysically plausible models we find that typically $N_{rm GW} lesssim$ 10. We find two separate regimes for the efficient dynamical hardening of BHBs: (1) spherical star clusters with high central densities, low velocity dispersions and no significant Keplerian component; and (2) migration traps in disks around SMBHs lacking any significant spherical stellar component in the vicinity of the migration trap, which is expected due to effective orbital inclination reduction of any spherical population by the disk. We also find a weak correlation between the ratio of the second-order velocity moment to velocity dispersion in galactic nuclei and the rate of BHB mergers, where this ratio is a proxy for the ratio between the rotation- and dispersion-supported components. Because disks enforce planar interactions that are efficient in hardening BHBs, particularly in migration traps, they have high merger rates that can contribute significantly to the rate of BHB mergers detected by the advanced Laser Interferometer Gravitational-Wave Observatory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا