ترغب بنشر مسار تعليمي؟ اضغط هنا

Runaway OB Stars in the Small Magellanic Cloud: Dynamical Versus Supernova Ejections

130   0   0.0 ( 0 )
 نشر من قبل John Dorigo Jones
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Runaway OB stars are ejected from their parent clusters via two mechanisms, both involving multiple stars: the dynamical ejection scenario (DES) and the binary supernova scenario (BSS). We constrain the relative contributions from these two ejection mechanisms in the Small Magellanic Cloud (SMC) using data for 304 field OB stars from the spatially complete, Runaways and Isolated O-Type Star Spectroscopic Survey of the SMC (RIOTS4). We obtain stellar masses and projected rotational velocities $v_rsin i $ for the sample using RIOTS4 spectra, and use transverse velocities $v_{rm loc}$ from $it{Gaia}$ DR2 proper motions. Kinematic analyses of the masses, $v_rsin i $, non-compact binaries, high-mass X-ray binaries, and Oe/Be stars largely support predictions for the statistical properties of the DES and BSS populations. We find that dynamical ejections dominate over supernova ejections by a factor of $sim 2-3$ in the SMC, and our results suggest a high frequency of DES runaways and binary ejections. Objects seen as BSS runaways also include two-step ejections of binaries that are reaccelerated by SN kicks. We find that two-step runaways likely dominate the BSS runaway population. Our results further imply that any contribution from $it{in-situ}$ field OB star formation is small. Finally, our data strongly support the post-mass-transfer model for the origin of classical Oe/Be stars, providing a simple explanation for the bimodality in the $v_rsin i $ distribution and high, near-critical, Oe/Be rotation velocities. The close correspondence of Oe/Be stars with BSS predictions implies that the emission-line disks are long-lived.



قيم البحث

اقرأ أيضاً

We use GAIA DR2 proper motions of the RIOTS4 field OB stars in the Small Magellanic Cloud (SMC) to study the kinematics of runaway stars. The data reveal that the SMC Wing has a systemic peculiar motion relative to the SMC Bar of (v_RA, v_Dec) = (62 +/-7, -18+/-5) km/s and relative radial velocity +4.5 +/- 5.0 km/s. This unambiguously demonstrates that these two regions are kinematically distinct: the Wing is moving away from the Bar, and towards the Large Magellanic Cloud with a 3-D velocity of 64 +/- 10 km/s. This is consistent with models for a recent, direct collision between the Clouds. We present transverse velocity distributions for our field OB stars, confirming that unbound runaways comprise on the order of half our sample, possibly more. Using eclipsing binaries and double-lined spectroscopic binaries as tracers of dynamically ejected runaways, and high-mass X-ray binaries (HMXBs) as tracers of runaways accelerated by supernova kicks, we find significant contributions from both populations. The data suggest that HMXBs have lower velocity dispersion relative to dynamically ejected binaries, consistent with the former corresponding to less energetic supernova kicks that failed to unbind the components. Evidence suggests that our fast runaways are dominated by dynamical, rather than supernova, ejections.
Using archival Spitzer Space Telescope data, we identified for the first time a dozen runaway OB stars in the Small Magellanic Cloud (SMC) through the detection of their bow shocks. The geometry of detected bow shocks allows us to infer the direction of motion of the associated stars and to determine their possible parent clusters and associations. One of the identified runaway stars, AzV 471, was already known as a high-velocity star on the basis of its high peculiar radial velocity, which is offset by ~40 km/s from the local systemic velocity. We discuss implications of our findings for the problem of the origin of field OB stars. Several of the bow shock-producing stars are found in the confines of associations, suggesting that these may be alien stars contributing to the age spread observed for some young stellar systems. We also report the discovery of a kidney-shaped nebula attached to the early WN-type star SMC-WR3 (AzV 60a). We interpreted this nebula as an interstellar structure created owing to the interaction between the stellar wind and the ambient interstellar medium.
Whether any OB stars form in isolation is a question central to theories of massive star formation. To address this, we search for tiny, sparse clusters around 210 field OB stars from the Runaways and Isolated O-Type Star Spectroscopic Survey of the SMC (RIOTS4), using friends-of-friends (FOF) and nearest neighbors (NN) algorithms. We also stack the target fields to evaluate the presence of an aggregate density enhancement. Using several statistical tests, we compare these observations with three random-field datasets, and we also compare the known runaways to non-runaways. We find that the local environments of non-runaways show higher aggregate central densities than for runaways, implying the presence of some tips-of-iceberg (TIB) clusters. We find that the frequency of these tiny clusters is low, $sim 4-5%$ of our sample. This fraction is much lower than some previous estimates, but is consistent with field OB stars being almost entirely runaway and walkaway stars. The lack of TIB clusters implies that such objects either evaporate on short timescales, or do not form, implying a higher cluster lower-mass limit and consistent with a relationship between maximum stellar mass ($m_{rm max}$) and the mass of the cluster ($M_{rm cl}$). On the other hand, we also cannot rule out that some OB stars may form in highly isolated conditions. Our results set strong constraints on the formation of massive stars in relative isolation.
We recently discovered a yellow supergiant (YSG) in the Small Magellanic Cloud (SMC) with a heliocentric radial velocity of ~300 km/s which is much larger than expected for a star in its location in the SMC. This is the first runaway YSG ever discove red and only the second evolved runaway star discovered in a different galaxy than the Milky Way. We classify the star as G5-8I, and use de-reddened broad-band colors with model atmospheres to determine an effective temperature of 4700+/-250K, consistent with what is expected from its spectral type. The stars luminosity is then L/Lo ~ 4.2+/-0.1, consistent with it being a ~30Myr 9Mo star according to the Geneva evolution models. The star is currently located in the outer portion of the SMCs body, but if the stars transverse peculiar velocity is similar to its peculiar radial velocity, in 10Myr the star would have moved 1.6 degrees across the disk of the SMC, and could easily have been born in one of the SMCs star-forming regions. Based on its large radial velocity, we suggest it originated in a binary system where the primary exploded as a supernovae thus flinging the runaway star out into space. Such stars may provide an important mechanism for the dispersal of heavier elements in galaxies given the large percentage of massive stars that are runaways. In the future we hope to look into additional evolved runaway stars that were discovered as part of our other past surveys.
124 - R. Hainich , D. Pasemann , H. Todt 2015
Wolf-Rayet (WR) stars have a severe impact on their environments owing to their strong ionizing radiation fields and powerful stellar winds. Since these winds are considered to be driven by radiation pressure, it is theoretically expected that the de gree of the wind mass-loss depends on the initial metallicity of WR stars. Following our comprehensive studies of WR stars in the Milky Way, M31, and the LMC, we derive stellar parameters and mass-loss rates for all seven putatively single WN stars known in the SMC. Based on these data, we discuss the impact of a low-metallicity environment on the mass loss and evolution of WR stars. The quantitative analysis of the WN stars is performed with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. The physical properties of our program stars are obtained from fitting synthetic spectra to multi-band observations. In all SMC WN stars, a considerable surface hydrogen abundance is detectable. The majority of these objects have stellar temperatures exceeding 75 kK, while their luminosities range from 10^5.5 to 10^6.1 Lsun. The WN stars in the SMC exhibit on average lower mass-loss rates and weaker winds than their counterparts in the Milky Way, M31, and the LMC. By comparing the mass-loss rates derived for WN stars in different Local Group galaxies, we conclude that a clear dependence of the wind mass-loss on the initial metallicity is evident, supporting the current paradigm that WR winds are driven by radiation. A metallicity effect on the evolution of massive stars is obvious from the HRD positions of the SMC WN stars at high temperatures and high luminosities. Standard evolution tracks are not able to reproduce these parameters and the observed surface hydrogen abundances. Homogeneous evolution might provide a better explanation for their evolutionary past.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا