ترغب بنشر مسار تعليمي؟ اضغط هنا

Raman scattering study of tetragonal magnetic phase in Sr$_{1-x}$Na$_x$Fe$_2$As$_2$: structural symmetry and electronic gap

71   0   0.0 ( 0 )
 نشر من قبل Yuan Li
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use inelastic light scattering to study Sr$_{1-x}$Na$_x$Fe$_2$As$_2$ ($xapprox0.34$), which exhibits a robust tetragonal magnetic phase that restores the four-fold rotation symmetry inside the orthorhombic magnetic phase. With cooling, we observe splitting and recombination of an $E_g$ phonon peak upon entering the orthorhombic and tetragonal magnetic phases, respectively, consistent with the reentrant phase behavior. Our electronic Raman data reveal a pronounced feature that is clearly associated with the tetragonal magnetic phase, suggesting the opening of an electronic gap. No phonon back-folding behavior can be detected above the noise level, which implies that any lattice translation symmetry breaking in the tetragonal magnetic phase must be very weak.



قيم البحث

اقرأ أيضاً

Synchrotron x-ray diffraction experiments were performed on BaFe$_2$As$_2$ and Sr(Fe$_{1-x}$Co$_{x}$)$_2$As$_2$ single crystals as a function of temperature and applied magnetic field along the tetragonal $[1 bar{1} 0]$ direction, complemented by ele ctrical resistivity and specific heat experiments. For a BaFe$_2$As$_2$ crystal with spin-density-wave antiferromagnetic ordering temperature $T_{AF}=132.5$ K and onset of the orthorhombic phase at $T_{o}=137$ K, the magnetic field favors the growth of tetragonal domains that compete with orthorhombic ones for $T gtrsim T_{AF}$. For a Sr(Fe$_{1-x}$Co$_{x}$)$_2$As$_2$ crystal with more separated transitions ($T_{AF} = 132$ K and $T_{o} = 152$ K), the crystal structure also shows significant field-dependence in a narrow temperature interval close to $T_{AF}$. These results favor magnetism as the driver of the structural and nematic transitions in 122 Fe pnictides.
121 - S.-F. Wu , P. Richard , H. Ding 2016
Using polarization-resolved electronic Raman scattering we study under-doped, optimally-doped and over-doped Ba$_{1-x}$K$_{x}$Fe$_2$As$_2$ samples in the normal and superconducting states. We show that low-energy nematic fluctuations are universal fo r all studied doping range. In the superconducting state, we observe two distinct superconducting pair breaking peaks corresponding to one large and one small superconducting gaps. In addition, we detect a collective mode below the superconducting transition in the B$_{2g}$ channel and determine the evolution of its binding energy with doping. Possible scenarios are proposed to explain the origin of the in-gap collective mode. In the superconducting state of the under-doped regime, we detect a re-entrance transition below which the spectral background changes and the collective mode vanishes.
We report inelastic x-ray scattering measurements of the in-plane polarized transverse acoustic phonon mode propagating along $qparallel$[100] in various hole-doped compounds belonging to the 122 family of iron-based superconductors. The slope of the dispersion of this phonon mode is proportional to the square root of the shear modulus $C_{66}$ in the $q rightarrow 0$ limit and, hence, sensitive to the tetragonal-to-orthorhombic structural phase transition occurring in these compounds. In contrast to a recent report for Ba(Fe$_{0.94}$Co$_{0.06}$)$_2$As$_2$ [F. Weber et al., Phys. Rev. B 98, 014516 (2018)], we find qualitative agreement between values of $C_{66}$ deduced from our experiments and those derived from measurements of the Youngs modulus in Ba$_{1-x}$(K,Na)$_x$Fe$_2$As$_2$ at optimal doping. These results provide an upper limit of about 50 {AA} for the nematic correlation length for the optimally hole-doped compounds. Furthermore, we also studied compounds at lower doping levels exhibiting the orthorhombic magnetic phase, where $C_{66}$ is not accessible by volume probes, as well as the C4 tetragonal magnetic phase.investigated
We report Raman scattering measurements on iron-pnictide superconductor Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ single crystals with varying cobalt $x$ content. The electronic Raman continuum shows a strong spectral weight redistribution upon entering the mag netic phase induced by the opening of the Spin Density Wave (SDW) gap. It displays two spectral features that weaken with doping, which are assigned to two SDW induced electronic transitions. Raman symmetry arguments are discussed to identify the origin of these electronic transitions in terms of orbital ordering in the magnetic phase. Our data do not seem consistent with an orbital ordering scenario and advocate for a more conventional band-folding picture with two types of electronic transitions in the SDW state, a high energy transition between two anti-crossed SDW bands and a lower energy transition involving a folded band that do not anti-cross in the SDW state. The latter transition could be linked to the presence of Dirac cones in the electronic dispersion of the magnetic state. The spectra in the SDW state also show significant coupling between the arsenide optical phonon and the electronic continuum. The symmetry dependence of the arsenide phonon intensity indicates a strong in-plane anisotropy of the dielectric susceptibility in the magnetic state.
Combined neutron and x-ray diffraction experiments demonstrate the formation of a low-temperature minority tetragonal phase in Ba$_{0.76}$K$_{0.24}$Fe$_2$As$_2$ in addition to the majority magnetic, orthorhombic phase. A coincident enhancement in the magnetic ($frac{1}{2}$ $frac{1}{2}$ 1) peaks shows that this minority phase is of the same type that was observed in Ba$_{1-x}$Na$_x$Fe$_2$As$_2$ ($0.24 leq x leq 0.28$), in which the magnetic moments reorient along the $c$-axis. This is evidence that the tetragonal magnetic phase is a universal feature of the hole-doped iron-based superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا