ﻻ يوجد ملخص باللغة العربية
We report Raman scattering measurements on iron-pnictide superconductor Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ single crystals with varying cobalt $x$ content. The electronic Raman continuum shows a strong spectral weight redistribution upon entering the magnetic phase induced by the opening of the Spin Density Wave (SDW) gap. It displays two spectral features that weaken with doping, which are assigned to two SDW induced electronic transitions. Raman symmetry arguments are discussed to identify the origin of these electronic transitions in terms of orbital ordering in the magnetic phase. Our data do not seem consistent with an orbital ordering scenario and advocate for a more conventional band-folding picture with two types of electronic transitions in the SDW state, a high energy transition between two anti-crossed SDW bands and a lower energy transition involving a folded band that do not anti-cross in the SDW state. The latter transition could be linked to the presence of Dirac cones in the electronic dispersion of the magnetic state. The spectra in the SDW state also show significant coupling between the arsenide optical phonon and the electronic continuum. The symmetry dependence of the arsenide phonon intensity indicates a strong in-plane anisotropy of the dielectric susceptibility in the magnetic state.
We report a doping dependent electronic Raman scattering measurements on iron-pnictide superconductor Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ single crystals. A strongly anisotropic gap is found at optimal doping for x=0.065 with $Delta_{max}sim 5Delta_{min}$
Using electronic Raman spectroscopy, we report direct measurements of charge nematic fluctuations in the tetragonal phase of strain-free Ba(Fe$_{1-x}$Co$_{x})_{2}$As$_{2}$ single crystals. The strong enhancement of the Raman response at low temperatu
Systematic measurements of the resistivity, heat capacity, susceptibility and Hall coefficient are presented for single crystal samples of the electron-doped superconductor Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$. These data delineate an $x-T$ phase diagram i
Using polarization-resolved electronic Raman scattering we study under-doped, optimally-doped and over-doped Ba$_{1-x}$K$_{x}$Fe$_2$As$_2$ samples in the normal and superconducting states. We show that low-energy nematic fluctuations are universal fo
Measurements of the current-voltage characteristics were performed on Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ single crystals with doping level $0.044 leq x leq 0.1$. An unconventional increase in the flux-flow resistivity $rho_{rm ff}$ with decreasing magnet